DISTRIEUTION STATTIMENT K}
Approvaa ter purie teiease;

E‘_hmm.m Uniizired

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

. +
YA

beonad

AFIT/GE/ENG/S0D-41

I »
w2

V,ﬂ\

T ™
w5k 2 .3
"\

g

Specification and Equivalence Verification

of
Sequential Circuits
via VHDL
THESIS
'
o Richard L. Miller

Captain, USAF
AFIT/GE/ENG/90D-41

Approved for public release; distribution unlimited

Specification and Equivalence Verification
of Sequential Circuits via VHDL

Thesis

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfilment of the
Requirements for the Degree of
Master of Science in Electrical Engineering

Richard L. Miller, BSEE
Captain, USAF

November, 1990

Approved tor public release; distribution unlimited

Pretace

This research presents a merger of the specification and design capabilities of the
VHDL with a known verification method in order to solve the design and verification problem
of sequential circuits. The fruits of this research are a behavioral VHDL model for sequential
circuit specification, a structural VHDL model for sequential circuit design, and a method for
comparing two circuits described using these VHDL models in order to demonstrate circuit
equivalence.

In performing this research | received immeasurable assistance from many people. At
this time, | would like to thank my advisor, Capt Bruce George, for his exceptional counsel and
leadership in directing the nature of my research. Additionally, thanks go to Capt Mark Mehalic
and Major Kim Kanzaki; their guidance and comments surely improved the quality of the
finished product. 1 would also like to thank the members of the Joint Integrated Avionics
Working Group (JIAWG) Test and Maintenance Bus committee. Their ongoing design effort
played a pivotal role in the development of the behavioral VHDL sequential circuit model.
Further thanks go to my research’s sponsors, Capt Jack Strauss and Nelson Estes. Without
their efforts, this this work would surely not have begun. Finally, | would like to thank my wife,
Wendy Haas. Without her, surely the trials and tribulations "atfectionately” called AFIT would
not have been bearable; BFNO.

Richard L. Miller

Page

| (= £ Vol DO PO USRI ii
LISt Of FIQUIES.....comiiiiiiiiiii et et e e et s e et e e e ne e e e vii
ADSEIFACT ..o e e s ee s e tr et e e s e e et aenr e as et anranes viii
T INIPOAUCHION ...t ettt s s e s aesran s s s e e saanasaan 1.1
1.1 Problem Statementc.ooiiiii et 1.2

1.2 BacCKground.........ocviiiiiiiiiiii et e st s 1.3

1.3 S0P ittt ettt ee e ere e nnanres 1.3

1.4 APPrOACK.... ..ot e e e 1.4

1.5 EXpected GaiNcoiiiiiiiiiiiiiii e e s s e 1.4

1.6 TheSiS OVEIVIBW......cccviiiiiiiiiiiii ettt svvs e vaer e s s eaeees 1.4

2 BacKground..........ooooiiiiiiiii e et e e s aeee e e s seaes 2.1
2.1 Sequential CirCUISccooviiiiiiiiieii et 21

2.2 VerifiCatioN.. ... e e e 2.4

2.2.1 Verification EHOMS.......oc.vviiiiiiiiirierien et ccerree e e 24

2.2.2 Verification Methods.............ccccooiiiiiiii s 2.5

2.2.2.1 Symbolic Logic Verificationccevieieiiiiiini e, 2.5

2.2.2.2 Tempoial Logic Verification..........cccccccervivniiiiiinininininienne. 2.8

2.2.2.3 State Transition Graph Enumeration Equivalence.............. 2.10

2.3 SOIUON.....cooiiiiii i sttt e et ettt rs e e aee e e e rarannes 2.12

2.3.1 APP0ACKH......iii ittt e ee e e 2.12

2.3.2 UC Berkeley Verification Tool Suiteoccccrviiieericecnnnininniieneennn. 2.13

2.3.2.1 Tool Methodology............eumereieriiiiineiiirecienreieeeneneevaeeenene 2.14

2.3.21.1 Pre_verif.......cccooiirioiiierre e 2.14

2.3.2.1.2 Verif ...t 2.15

2.3.2.2 Verification Results...........c.ccoeoviiiiiiiiinciniiinniieeeee 2.i8

2.3.3 VHDL ...ttt ettt e rer e s smme e reae e e ae 2.19

2.3.3.1 Why VHDL .ottt eetece e e e st ee s 2.19

2.3.3.2 VHDL Featuresccccoiviiiiiimricrecnrcsnninnineessesenenene 2.22

2.3.3.2.1 Structural Features.............ccceuricrecriensiiivanenenen. 2.22

2.3.3.2.2 Behavioral Features...........cccoccceeviiiniiiinnieneenne. 2.25

3 Sequential Circuit Modeling via VHDL...............ccoccciiiii e, 3.1

3.1 EIA CONVENEONS ..ottt ettt e ee e e ererreer e e e eeteeeeeeeeeeneeeneeeeeeaees 3.1
3.2 The Model's VHDL ENtifY......cccciiiiiiiiiecrie e iee et ce e e esneeaeseene e e ensnnnnnaeas 3.2
3.2.1 Entity CONCOPL......oooiiiiii i e 3.2

3.2.2 Entity Example........o.oiiiiiii e, 3.2

3.3 VHDL Behavioral Architectural Bodycccooiiiiiiiiiiiiii e e 3.3
3.3.1 Behavioral Model Concept.........coceeiiiiiiiiiiei i et 3.4
3.3.1.1 Transition ProCeSS.......cccccciceeeeiiiiiiiiicciteecen i rreeee e ee st cvanees 3.5

3.3.1.2 State BloCKS.. ..ot 3.8

3.3.1.3 Additional Concurrent Actions..........cceccceevvirinininiineninrenen. e 3.1

3.3.2 Behavioral Model Example.........ccccimiiiiiiii e 3.13

3.3.2.1 CPU Controller............coooeeeeiiriiiimiiiiiiciin et e 3.13

3.4 VHDL Structural Architectural Bodyoueeiiiiiiiirieeecici et eecreceinsnse s eeeene 3.22
3.4.1 Structural Model CONCePt........ccooviiiiiiiiiiiiiiirrc e i e 3.23

3.4.2 The Structural Architectural Bodycccoiiiiiiiiiiic it 3.25

3.4.2.1 Instantiated Componentscoooeiiii i e ceneas 3.25

3.4.2.2 Bus SUPPOMt.....o.ooiiiiiiiri i treveenees 3.26

3.4.2.3 Inttialization..........cccceeiiiiiiine i 3.26

3.4.3 Structural Model EXample..........cccccvvricriiiiiiniiiiiiiiininreeccsesssenencnneene 3.27

4 Verification SOMWAIS........cccviiiiiiiic ettt et e et 4.1
4.1 The Verification Software Environment.................ciiiiiiininiini e, 4.1

4.2 Structural Translation ... e 42

4.2.1 VHDL mappings to UC Berkeley Netlist............ccccoovniimiinmnnnniinnnnnne 4.4

4.2.2 Pre_verif Modificationscoccivirreiiniinniiiic 4.12

4.2.3 Pre_verif VHDL Constraintsccccceemvniiiiiiiiiiinicicnicc v, 4.13

4.3 Behavioral Translation.............ccccveeiiiiiiiimmiiiiiii e 4.15

4.3.1 The b2s Theory of Operation........ccccccccmiciriiiirimiiiin e 4.15

4.3.2 VHDL Behavioral to State Transition Table Mapping...........ccccccornene 4.16

4.3.3 VHDL Behavioral COnstructs............cccoviiiiiiniiniiiiiniiinsccn e, 4.18

4.4 Software Validation............ccccoiiirieiiniciinii 4.20

5 Model and Verification EXamples............cccooiiiiiiiiniiiicicciitiree et sise e e e 5.1
5.1 Behavioral Model............ccccveiiiiiminiciiniiin e 5.1

5.1.1 Test and Maintenance BUS............ccccocireiimiiiiiinn e e e 5.1

5.1.2 DesCrPtON ...ttt 5.2

5.1.3 Skeletal Design...........ccccceeeiiiiiiiiiieecee e e e 5.2

5.2 Structural Model EXamples............c.coireiiiiiieiiiie st ssee s v e 5.6
5.2.1 Sequence Detector.............c.ccccceiiiiiiieriiiienie et vece e vrneasaae s 5.6

5.2.1.1 DeSCriplioncuiuiiiiiiiiiiiiiiiiieieieieie ettt ee e v, 5.7

5.2.1.2 DOSIGNS ...t et nanas 57

5.2.2 Eight-Instruction CPU Controller..........c.ccoevcimicrrreieiinreeeeee. 5.8

5.2.2.1 DesCription ...ttt 5.8

5.2.2.2 DOSIGNS ... viriiieieei et eee e re e 5.8

5.3 Equivalence Verification ...t 5.9
5.3.1 Structure to Structure Verification.............cccccrvvrneencerinnnnienreennneene 5.10

5.3.1.1 Sequence Detectorsccevvreieeeiiiecivcrere e sree e 5.10

5.3.1.2 CPU Controllersccueviriiiiiiieeiiricveieieeeeeeeeseeeveneeesseens 5.10

5.3.2 Behavior to Structure Verificationccccceeoviveeeriiiieereercinneneeane 5.1

6 Conclusions, Recommendations, and SUMMArY............ccccceevriviinieieniiiiecrercsresceneee e e 6.1
6.1 CONCIUSIONS......ouiiiiiiiiiiiiiiei et re et eee e e e e s e s e s mn e 6.1
B.1.1 MOABIS ...ttt eeee e e 6.1

6.1.1.1 The Behavioral Model.................ccccvmerieemmmemrieiincmnrarnraenens 6.1

5.1.1.2 The Structural Modelc.ccocceeiiiniiiier e, 6.2

6.1.2 Verification...........ccccoiiiiini et et e e 6.2

6.2 RecoMMENAAtiONS........cccooiiitiiiir ettt et cee e et ae e er e seee e e e e e e e e eeeeaeee 6.3
6.2.1 VHDL Model EnNhancements............ccccceeeircrerrnreesncnceeneee s siannesaeens 6.4

6.2.1.1 Behavioral Model Enhancements.............cccccoceeeiriceiaannnne 6.4

6.2.1.2 Structural Model Enhancements.ccccceeeeiniiierenneennn 6.7

6.2.2 Verification Software Enhancements.............ccoovveeeiriiiiiniiiiinnneennne 6.8

6.2.2.1 Enhancements to pre_verif...........cccocveereerceiiniiiinenee e 6.8

6.2.2.2 Extensions t0 b2s.ccoriiiiiiiiiiiiiiiiinreeeee e 6.9

6.3.2.2.1 Structural VHDL Optimization.ccocceeeeneee. 6.9

6.3.2.2.2 Alternate b2s Output Formats.ccccvreinienane 6.10

6.2.3 Incorporating Timing into the Verification Process..........c..ccocceeueeenen. 6.11

6.3 SUMMAIY ...ttt ettt e see s e e e esaeeraeata e es s e e e teannevnssesasasannnannsanes 6.15

Appendix A: Electronics Industry Association Basic Definitions...............cccceeeeciveeinnnneeennn. A1

Appendix B: The Behavioral Modelc.cooeiiiiiiii ettt e B.1
Appendix C: The Structural Model..............ccciiiiiiiiii e e CA
Appendix D: Verification Software Environment Tutorialcocciiiiiiiiiiciiiveeen e, DA
Appendix E: Behavioral Model Examples............ccccoiieiiiiiiricciniiieie e cereeceaer e, E.1
Appendix F: Structural Model EXamples........cccooiiriiiiiiiiiiiins rervececceeccerrrsnee s seennene e F.1
BIDNOGIAPRY ..eveeeeee it e e ae st s e nn e Bib.1
V8 e e r et e e e e e e e e e e e s ae s e e e e e aa e e aeae e e asananaeens Vita.1

vi

Figure

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
3.1
3.2
3.3
3.4
3.5
3.6
3.7
38
4.1
4.2
4.3
5.1
5.2
5.3
5.4
6.1
6.2
6.3
6.4
6.5

Page
State Transition Graph...........ccoiiiiiiiiiiiiii e st 2.2
State MacChiNeS.........uuiiiiiiiiiii et e e e e ree e s 2.3
Hierarchical State Machings..........c.ccccviiiiiiiiii e 2.3
Typical Set/Reset Flip-Flop Implementation.............occiiiiiiiiiiiinniennininee. 2.6
Continuous and Temporal Logic Waveform Representations............cccceceveeenen. 2.8
Sample State Transition Graph (STG)ccooviviiiinniiiinii i, 2.11
Verification TOOI SURGcccccevmimiiiiriic 2.14
AN EXaMPIE ST G ..o ere e e 217
Verification RBSUIS..........covivieiiiiiiii it 2.19
Two Current VHDL Sequential Circuit Specification Styles..............ccccciniiiiicenns 2.21
Half Adder.. ..o 2.23
Design HIBrarchycooooiiiiiiiiiiniiiiiiic e 2.25
Simple Sequential Machine and Its Component Pieces............cccceevviniivneiennnicnnnnes 3.4
Skeletal State Machine...........ccccooviiiiiiiiiiiii 3.7
Block Diagram of the 8 Instruction CPU.........c.coccviviiiiiiriirveen, 3.14
Control Signal to CPU Micro-operation Relationship.............ccooeiiiiiniiniinininiiinnene. 3.15
Controller's Behavioral Operation............cccocccceveiiiiiiiiiiice e e 3.18
CPU Controller State Machine Diagram............cccecivvviviiiiiiiniiinieiece e 3.19
Sequence Detector State Diagram............ccociveriiiiiiiiciini e 3.28
And-Or IMPIEMENEAtION......ooiviiiie i e 3.28
Verification Process FIOW.ccccooovicciiiiiiiinin et s 4.3
State Transition Table After Examining Transition Process............cccoccvvvniiinninnnnn 4.17
State Transition Table After Processing All State BIOCKS.ccccoovvvvininnnnnnnnn, 417
Nosted State Machine............ccoccciiiiiiiierecir e i s e e 5.4
SeqUENCE DOECION.cccciiiiiiiie e 5.7
Eight Instruction CPU Controlier Error Location............ccoooiiiinnn 5.9
Two-input, Two-output, Synchronous Sequential Circuit..............c..coeieevnnnnnnnns 5.12
Behavioral VHDL Sequential Circuit within @ System.................cccooveiininnnne 6.7
Sample State Transition Table Incorporating Timing Information.............................. 6.13
Delay Time Insertion into the Behavioral Model. ..., 6.14
Lumped Sum Propagation Delay.ccccoeiiiiiiiniiiiiiee e 6.14
Equivalent Output Signals within a Tolerance Region...............c.cccooeiiiiiniins 6.15

vii

AFIT/GE/ENG/30D-41
Abstract

There exists an acute need for a methodology by which a circuit can be designed and
validated against its specification before the circuit is fabricated. This thesis presents a merger of the
specitication and design capabilities of the Very High Speed Integrated Circuit (VHSIC) Hardware
Description Language (VHDL) with a verification method in order to solve the design and validation
problem of sequential circuits. Currently, there is no methodology in-use, beyond exhaustive circuit
simulation, which verifies the equivalence of an electronic system either to its specifications or to
another electronic system. This problem is keenly apparent in the Air Force's Advanced Tactical
Fighter program, the Navy's A-12 Fleet Defense Fighter, and the Army’'s LHX Attack Helicopter
program. Congress has mandated that these vehicles utilize a common avionics architecture
incorporating interchangeable, re-usable system modules. This interchangeability allows a
tremendous amount of system flexibility; each air vehicle's avionics suite can be tailored from a
common architecture into an integrated package that specifically meets the vehicle's combat mission.
But, reusability depends on the equivalence of the system modules which, in this case, will be
manufactured by three separate vendors working from a common system and module design
specification. Currently, their module equivalence can be shown only by an expensive and
exhaustive simulation. This thesis presents an altemative solution for sequential circuit development
based upon the concepts of state equivalence. VHDL provides the capabilities of specification,
design, and simulation for behavioral and structural electronic systems. Because of these features, it
has been embraced by the DoD and has been designated as an IEEE standard. Further, a verification
method exists whereby structural circuit descriptions can be tested for equivalence. This thesis
reports on a proposed behavioral VHDL model for sequential circuit specification, a structural VHDL
model for circuit description, and a software environment developed from UC Berkeley's VERIF
software in order to accept both VHDL models and perform equivalence validation on the circuits

these VHDL models describe.

viii

Specification and Equivalence Verification
of

Sequential Circuits via VHDL

1 Introduction

There exists an acute need for a methodology by which a circuit can be designed and
validated against its specification before the circuit is fabricated. The Very High Speed Integrated
Circuit (VHSIC) Hardware Description Language (VHDL) provides the capabilities of specification,
design, and simulation for electronic systems modeled either behaviorally or structurally. Further,
verification methods exist whereby structural and behavioral circuit descriptions can be tested for
equivalence. This thesis presents a merger of the specification and design capabilities of the
VHDL with these verification methods in order to solve the design and verification problem of
sequential circuits. The products are a behavioral VHDL sequential circuit model for sequential
circuit specification, a structural VHDL modet for sequential circuit design, and a method for
comparing two circuits described using these VHDL models in order to demonstrate circuit
equivalence. This chapter states tha present problem, lays down the solution's scope and

approach, discusses expected oenefits, and outlines the thesis presentation.

1.1

1.1 Problem Statement

Currently, there is no methodology in-use, beyond exhaustive circuit simulation, which
permits the equivalence verification of an electronic system either to iis specifications or to
another electronic system provided by a different vendor (1). This problem is keenly apparent in
the Air Force's Advanced Tactical Fighter program, the Navy's A-12 Fleet Defense Fighter, and
the Army's LHX Attack Helicopter program. Congress has mandated that these air vehicles utilize
a common avionics architecture incorporating interchangeable system modules (2). This
interchangeability allows a tremendous amount of system flexibility; each air vehicle's avionics
suite can be tailored into an integrated package that specifically meets the vehicle's combat
mission. But, interchangeability depends on the equivalence of the system modules which, in
this case, will be manufactured by three separate vendors working froem a commen system and
module design specification. Currently, module equivalence can be shown only by an expensive

and exhaustive simulation.

The need for a verification methodology is also apparent in today's Computer Aided
Design (CAD) environment. Design error detection and correction, which often occur late in a
digital circuit's design phase, cause unexpected, often time-consuming delays in the circuit's
production. By one account, 80% of all errors found during tests of the manufactured circuits are
directly traceable to specification errors that cause deviations from the original design intent (1).
Presently, these errors are detected by simulating the digital circuit's model prior to fabrication or
by testing the manufactured circuit (1). Clearly, there exists an acute need for a methodology by
which a module or a circuit can be designed and verified equivalent to its specification, another

similar module, or a similar circuit.

1.2

1.2 Background

In order to reduce errors in designs and in turn reduce costs and manufacturing time, several
different techniques have been employed within academia to prove that a digital circuit is either
equivalent to its specification or that two digital circuits are aquivalent to each other without circuit
simulation and before the circuit is fabricated. While ttie most successful techniques have been
applied to combinational logic circuits, several techniques for sequential logic circuits involving
memory devices have recently been explored. Additionally, several CAD languages have been
developed which attempt to address specific needs of sequential circuit design. None of these

techniques are production quality CAD tools. Chapter 2 reviews these techniques.

1.3 Scope

The objective of this research is to produce a method for comparing two sequential circuits
described via VHDL in order to demonstrate circuit equivalence. The two circuits can be
described at the behavioral and/or structural design levels. This objective can be divided into two
goals.

The first goal is to determine the appropriate VHDL language constructs to permit succinct
structural and behavioral modeling of a sequential circuit. The products of this goal are two VHDL-
based models, one for behavioral specification and another for structural sequential circuit
description. The intention being that both models will prove sufficient for use not only as
contractual documents but also as design tools. The second goal is to apply verification
techniques to sequential circuits which are portrayed using the behavioral and stnictural VHDL
models. The productis a set of software tools for comparing two sequential circuits described via
the VHDL models in order to prove or disprove circuit equivalence before actual circuit fabrication.

*ferging the specification and design capabilities of the VHDL with circuit verification methods

solves the specification, design, and verification problem of sequential circuits.

1.3

1.4 Approach

After studying the features of description languages which can be used for sequential circuit
modeling, similar language structures will be identified in the VHDL. Using these 'anguage
structures, sequential circuits will be modeled and simulated in the VHDL at the behavioral and
structurai design levels to ensure that the VHDL models accurately portray the function of the
desired sequential circuits. Further, sample system specifications will be reviewed to determine
what additional specifications can be incorporated into a VHDL model. Finally, once behavioral
and structural VHDL models have been developed and determined appropriate for modeling
sequential circuits, a verification technique will be applied to the VHDL circuit models. This last
step, in order to be a proof of concept, may require a restricted version of the VHDL models

derived for sequential circuit specitication and design.

1.5 Expected Gain

1f this country is to remain technologically competitive in not only electronic system design but
also CAD system development, the current design process of design verification by expensive
and exhaustive simulation must change. Clearly merging the specification and design capabilities
of VHDL with circuit verification methods offers a quicker and cheaper altemnative to simulation.
Additionally, this methodology permits the DoD to improve the procurement process by providing
to the vendor complete system or circuit specifications in VHDL rather than an ambiguous English
text. The vendor can check a system or circuit design directly against the VHDL specification

rather than indirectly against the vendor's interpretation of an English text specification.

1.6 Thesis Overview
This thesis is presented in six chapters. Chapter 2 shows the results of a literature review of

past and ongoing verification efforts and outlines several state machine description languages.

1.4

Also, Chapter 2 provides a description of state machine modeling and verification. Finally,
Chapter 2 presents key features of VHDL useful for sequential circuit design and details the
algorithms employed by the chosen verification software. Chapter 3 details the proposed VHDL
models for state machine modeling. Chapter 4 axplains the manner in which the chosen
verification tool was adaptud to VHDL. Chapter 5 presents sequential circuit designs utilizing the
models of Chapter 3 and their verification results. Finally, Chapter 6 concludes with an overall

summary and recommendations for future research efforts.

1.5

2 Background

This chapter provides background information concerning sequential circuits and
presents the solution for this research. l[tis divided into three sections. The first describes
sequential circuits; the second reviews past and ongoing verification efforts; and the third

presents the solution to the stated problem of design verification.

2.1 Sequential Circuits
A sequential circuit is a circuit which, when given a set of inputs, produces an output
which is a function not only of the inputs but also of an internally stored state of the circuit (3).
Further, the state of the sequential circuit may change given a set of inputs and present state
condition. A state machine (or finite state machine) is an abstract model used to describe a
sequential circuit. Mathematically, simple state machines may be represented as (4):
A set of states represented by Q,
A finite set of input symbols, |,
A finite set of output symbols, Z,
A mapping & representing | x Q into Q, also known as a next state function, and,
A function representing | x Q onto Z, (for the Mealy machine) or
a function w representing Q onto Z (for the Moore machine) also known as an output
function.
State machines are pictured using directed graphs. This representation is called a state transition
graph and is depicted in Figure 2.1. Additional state machine terms are defined as follows (3):
A state is a vector comprised of bits which may take on the values zero (0), one (1), or
don't care (x). The number of bits in a state vector equals the number of memory devices in the

state machine.

2.1

A minterm is a state vector which contains only the values one and zero.

One state covers another state if bits of one state are either equal to the corresponding
bits of the second state or the bits of the first state are Don't Cares (x).

Transitions occur when the function & produces a new state for the machine. Transitions

are also called edges.

$/w= 'x°'>°/lxo->z

Figure 2.1. State Transition Graph.

The state machine of Figure 2.1 represents a Mealy machine. A Mealy machine is non-
ceterministic in that its output(s) depend not only on present state information but also its input(s).
A Moore machine is deterministic in that its output(s) are dependent only on the present state of
the machine. Figure 2.2 portrays this difference between machines. Figure 2.2(a) is a non-
deterministic Mealy machine; Figure2.2(b) is a deterministic Moore. The terms state machine and
sequential circuit will be used interchangeably throughout this thesis.

Additional types of state machines are hierarchical machines; and concurrent (hybrid)
state machines. The hierarchical machines contains states in which additional state machines are
nested, as depicted in Figure 2.3; hybrid machines contain multiple "processes” active within

each state.

2.2

Input(s)

Input(s)

v

» Output(s)

Output(s)

Combinational Combinational
. Memory .
Logic Element(s) | Logic
@
P L
Comt)nngtnonal Memory
ogic Element(s)

(b)

Figure 2.2. State Machines.

Figure 2.3. Hierarchical State Machines.

2.3

2.2 Verification

In order to reduce errors in designs and in turn reduce costs and manufacturing time,
several different techniques have been employed to prove that a digital circuit is either equivalent
to its specification or that two digital circuits are equivalent to each other without circuit simulation
and before the circuit is fabricated. While the mo.st successful techniques have been applied to
combinational logic circuits, several techniques for sequential logic circuits involving memory
devices have recently been explored. This section reviews past and ongoing verification
research. The first section presents this work and its results; the second provides a more in depth

explanation of selected verification methodologies.

2.2.1 Verification Etforts

Verification can be decomposed into two divergent methodologies: one attempts to
prove the equivalence of a circuit to its specification through the application of formal mathematical
methods to both the circuit and its specification; the other attempts to prove equivalence via
searches or manipulations of alternate representations of the circuit's design space. Examples of
both methods and their results are presented here. In regards to their results, one author's
remarks are most telling: "The major stumbling block to formal verification methods is
SKEPTICISM" (5).

Formal verification methods have already seen success in verifying the equivalence of
various circuits allowing them to be fabricated prior to simulation (5). The British VIPER
microprocessor was completly verified using the predicate-logic based, High Order Language
(HOL) environment which is now available in the public domain. Produced at Cambridge
University, the VIPER chip was extensively tested between specification levels. With exhaustive
simutation only at the lower level portions of the design, no errors were found in the chip after the
first fabrication. Similarly, Cambridge University developed TAMARACK, a processor similar to a

pdp-11, which functioned correctly after the first fabrication with no pre-fab simulation.

2.4

Several Computer Aided Design (CAD) tools are available to aid in formal verification (5).
HOL, mentioned above and now in the public domain, comes with its own attached functional
language. LAMBDA, a commercially available product, also uses predicate logic, but indudes a
schematic capture feature. Additionally, it maintains specifications and tasks through logic
decomposition.

Other methods of verification which lend themselves toward sequential circuit verification
are under investigation. Recent work at UC Berkeley has developed two methods for verification:
algorithmic path tracing within the sequential circuit's state transition graph and a state transition
graph enumeration method which can be suported by interactive simulation(6, 7). No designs

verified by these two methods have been reported fabricated at this time in the literature.

2.2.2 Verification Methods

Three verification methods are presented: symbolic logic, temporal logic, and state
transition graph enumeration equivalence. Symbolic logic methods are used for predicate logic
systems such as HOL. The verification method choosen for this research is similar in concept to

the state transition graph method and is presented in Section 2.3.2.

2.2.2.1 Symbolic Logic Verification
Simply put, proof of equivalence via symbolic logic involves proving the equivalence of

the boolean equations that describe the state machine to either its specification's boolean

equations or to the boolean equations that describe another state machine (8). This technique is
analogous to the trigonometry problem of proving the equivalence of the two sides of a
trigonometric equation, such as tan(2AB) = sin(A)cos(B) + cos(B)sin(A) , by the proper
application of trigonometric identities.

Symbolic logic verification is hierarchical in nature (8). This means that it can be used to

check chip, board, or system equivalence. The key to its use is that each chip, board, or system

2.5

level design must be representable via symboalic logic (8). Variables, constants, boolean, and
arithmetic operators are permitted within the representation. The following example of a simple
set/reset flip-flop constructed of nand gates (taken from (8)) is presented to demonstrate features
of symbolic logic verification. In the example, the symbolic logic conditional operator notation has
been simplified to facilitate reading; further information is available in (8).

The desired set/reset flip-flop functions are such that, when SET is false (logically a 0)
and RESET is true (a logic value of 1), the output, Q, becomes true. Additionally, when SET is
true and RESET is false, the output becomes false; and, when both SET and RESET lines are

true, there is no changse in the output. This functionality is symbolically specified as:

if not (SET) and RESET then Q <- 1;
if SET and not (RESET) then Q <- 0;
if SET and RESET then Q <- Q;

The symbolic specification points out a key feature of symbolic logic verification. The
specification does not dictate nor imply the implementation of the design,; it simply specifies the

functionality of the system. Figure 2.4 shows a typical implementation of the set/reset flip-flop.

SET ———

RESET ——

Figure 2.4. Typical Set/Reset Flip-Flop Implementation.

2.6

Translated to symbolic logic, the design is:

Q <- not (SET and X):;
X <- not (RESET and Q);

In this representation, there is a total dependence of the design to the equations. A different
design that implements the same functions would have different equations. To prove the
equivalence of these two representations, verification proceeds by manipulating the logic
equations to prove that the circuit description equations are equivalent to the specification

equations. Continuing with the example, the verification steps are:

Q <- not (SET and X);

stepl:

Q <- not (SET and not (RESET and Q)); Substitution for X
step2:

Q <- not (SET) or (RESET and Q); DeMorgan's law
step3:

if not (SET) then Q <- 1 or (RESET and Q); Expansion
if SET then Q <~ 0 or (RESET and Q);

step4:
if not (SET) then Q <~ 1; Boolean Reduction
if SET then Q <- RESET and Q;

step5:

if not (SET) then Q <- 1; Expansion
if SET and RESET then Q <- (1 and Q);

if SET and not (RESET) then Q <- (0 and Q)

step6:

if not (SET) then Q <- 1; Boolean Reduction
if SET and RESET then Q <- Q

if SET and not (RESET) then Q <- 0;

At this point, the verification is complete; the equations derived from the original circuit

description are equivalent to the specification. In other words, the circuit correctly implements the

desired function.

2.7

This example shows that symbolic logic verification is a viable approach; but, it is not as
simple as it seems. Although artificial intelligence programming techniques (in the computer
languages Prolog or Lisp (1, 9)) are often employed to manipulate the symbolic equations, the
verification process is not completely automatic. Often, the verification program requires
considerable assistance from the designer to choose the correct theorem, substitution,
expansion, or reduction to use in the next step (10). Additionally, several verification systems
have been capable of verifying circuits only at the gate level (9). Because of these drawbacks,
symbolic logic verification has been found to be effective on small sequential circuits utilizing four

to six latches (7, 9).

2.2.2.2 Temporal Logic Verification

Atthough similar in approach to symbolic logic, temporal logic adds the important notion of
time to hardware descriptions (11). Figure 2.5 graphically shows a waveform that can be
expressed in temporal logic as (TX, lX)2 . This equation indicates that the signal X rises and falls
twice during the time period of interest. Additionally, two key operators are always, B, and
sometimes, ¢. As an example, the equation (Y = —(X)) indicates that Y is always the not of X;
while the equation (Y = (X)) indicates that Y is sometimes equal to the not of X. These

constructs along with conventional logic operators permit reasoning about signals over time (11).

1.0 - ’1 ,——1 1.0 oo 00 o ‘

0.8 0.8 f
3 3 j
Z 0.6 2 0.6 w
[=y [=
;«%’ 0.4 - é’ 0.4

0.2 0.2

0.0 T T o'o_w_'_H'

0 2 4 0o 2 a4
TIME TIME

Figure 2.5 Continuous and Temporal Logic Waveform Representations.

2.8

Some derivatives of temporal logic also include the concepts of faimess, safety, and
liveliness (10, 12). Fairness is a feature of interactive verification whereby the user enters a set of
constraints that will be valid infinitely often along some path within the sequential circuit (10). An
example would be a constraint which specifies that a process which continually requests access to
a hardware resource, such as memory, will eventually be granted access to that hardware
resource. The properties of safety and liveliness are properties specified by the user to be
checked against the circuit's description (12); they can be thought of as further specifications
beyond the functional specification. Safety properties specify that nothing wrong happens in the
circuit; while liveliness properties specify good circuit actions. The concepts of "wrong" and
"good" are relative to the specific circuit design.

Once the circuit has been described in temporal logic, several techniques are available to
prove its equivalence to a specification or to another circuit expressed in temporal logic. As in
symbolic logic verification, each method involves the manipulation of the logic equations until
equivalence is shown. An important difference lies, though, in the equations' manipulation
methodology and in the source of the temporal logic equations. Early verification efforts involved
hand-generated temporal logic descriptions at the circuit specification level and at the gate level.
Equivalence was then proven by direct manipulation of the temporal logic equations or their
equivalent binary decision diagrams (10). Binary Decision Diagrams (BDD) are acyclic graph
representations of boolean functions which provide a canonical form of the temporal logic
functions (13). The circuits are shown equivalent if and only if their BDDs are equivalent.

Recently, significant work has been performed to automatically develop the temporal
logic equations directly from a high level programming language or from a gate level design (13).
The Compositional State Machine Language (CSML) allows for a hierarchical definition and
interconnection of modules, compilation of the design into functional PLAs or PALs, and

extraction of the equivalent temporal logic description (14). The automatically generated

2.9

equations can then be verified with the specification descriptions or against the gate level design
(10). CSML provides high-level language teatures such as conditional and looping statements (if
and while). Additionally, CSML allows for the concurrency of hardware operation with a parallel
construct which permits concurrent statement evaluation (14). As a drawback, circuits described
in CSML must be synchronous and deterministic in nature; additionally, CSML supports only two-
level logic (zeros and ones) (14). The first requirement mandates one clock signal within the
circuit; the second narrows the design space to Moore state machine descriptions. While the third
requirement neglects the capabilities of muiti-level logic (zeros, ones, strong, weak, charge, pre-
charge, high-impedance, etc) exploited in other languages such as the DoD's VHSIC Hardware
Description Language (VHDL). Finally, unlike VHDL, the CSML software environment does not

support digital simulation of the circuit design.

2.2.2.3 State Transition Graph Enumeration Equivalence.

Proof of equivalence by state enumeration can be accomplished several ways (7). One
method involves extracting the state transition graphs (STG) from two sequential machine
descriptions and then showing their equivalence by exclusive-oring the STGs. Another
approach extracts a STG from the first sequential circuit, uses the STG to determine the circuit's
output on-and-off sets, and simulates these on the second circuit; the circuits are equivalent if
the second circuit's outputs match the first's. A final method enumerates not only the inputs but
also the state information of the two sequential circuits; equivalence is shown by differentiating
between these inputs and states. After a brief description of a STG, these approaches are
presented in order.

Figure 2.6 shows a sample STG. The circles indicate states of the sequential machine;

arrow-headed lines indicate transitions between states.

2.10

Figure 2.6. Sample State Transition Graph (STG).

The labels on the transitions, 11/0 for example, indicate input and output conditions during the
transition; the 11 specifies two logic ievel 1 inputs and the 0 specifies one logic level 0 output.
Each transition is triggered by a clocking pulse which is not shown on the graph. Although this
STG represents a deterministic Moore sequential circuit, the STG verification techniques
presented in this section are also capable of verifying non-deterministic Mealy circuits.

In the first verification method, an STG is enumerated for the first circuit by assuming
output(s) for the first circuit and searching the circuit to determine the input set(s) required to
produce the assumed output(s) (7). The STG generation process is repeated on the second
circuit. These two circuit descriptions can be at the same, or at different, levels of design
abstraction (7). Once the two STGs have been generated, a composite STG is created by
exclusive-oring the two STGs together. If, in the third STG, no path exists between the starting
state and any final states, the two sequential circuits are equivalent. if a path exists, the circuits
are not equivalent.

The second technique employs the simulation of the first circuit's inputs on the second
circuit. First, a STG is generated for the first circuit in the same manner as the previous technique.
This STG is used to determine input stimuli to apply to the second circuit; don't care signal
information is used to reduce the number of input sets required to test for equivalence. I, during

the simulation, the second circuit's output(s) duplicate the first circuit's, the two are equivalent (7).

Ttie final technique not only allows for the verification of discrete sequential circuits, but
also permits verification of interacting sequential machines (6). Unlike the previous two STG
methoas, however, this technique requires that the input and the state space be explicitly
enumerated (6). The approach to verification is that of checking for the equivalence of the
reset/stanting states of the two sequential circuits (6).

State transition graph verification methods have been shown viable on sequential ci wuits
ranging from 15 to 250 latches with upwards of 1020 states (6). Both single or interacting,
deterministic or non-deterministic sequential circuits can be verified (6, 7). Also, as opposed to
exhaustive circuit simulation, the STG method verifies circuits in minutes rather than hours (6).
Finally, it permits a versatile circuit description format at the gate, RTL, state table, or specification

levels of design abstraction (7).

2.3 Solution
This section details the solutio to the verification problem presented by this thesis. The
solution is to marry sequential circuits described via a hardware description language to a known

sequential circuit verification methodology.

2.3.1 Approach

The approach to the verification solution is broken down into two steps. The first step is
to develop a behavioral and a structural modeling method for sequential circuits. Once these
models have been developed, the verification software will be modified to accept as input
sequential circuits described using these two models. The product is a method for comparing two
sequential circuits described via the models in order to prove or disprove circuit equivalence
before actual circuit fabrication. The VHSIC Hardware Description Language (VHDL) will be used

to develop the models and the UC Berkeley verification software tools will be used for verification.

First, the chosen verification tool set is described along with its theory of operation. Second, the

hardware description language is described with attention given to several key features of the

language.

2.3.2 UC Berkeley Verification Tool Suite
The UC Berkeley verification tool suite consists of two tools: pre_verif and verif. The
pre_verif software is a pre-processor for venf. Graphically, their interaction is shown in Figure 2.7.
Using these two tools, the verification process is as follows. Pre_verif is invoked twice, once for
each of the two structurally defined sequential circuits which are desired to be verified equivalent
(or non-equivalent). This produces two input files for verif. In these two new files are the covers
and some associated information from the two sequential circuits {the contents of which to be
described in detail shortly). Then, verif is invoked and processes the two files to determine if the
sequential circuits are equivalent. If so, verif exits with the statement
#MACHINES ARE THE SAME
otherwise the machines are not equivalent and verif exits with the statement
#MACHINES ARE DIFFERENT
followed by a set of input vectors (called the differentiating sequence) which, when applied as
inputs to the sequential circuit, step the twoe machines through their states until the states of the
two machines which exhibit different behaviors are reached.
The UC Berkeley pre_verif and verif software tools are available as source code from UC
Berkeley for a DEC microVAX workstation. The tools are written in the programming language C
and run on the VAX's ULTRIX operating system. ULTRIX is DEC's instantiation of UNIX for their

microVAX workstations.

2.13

— LOGIC — —> LOGIC ——

Circuit 1 ; Circuit 2

Frs Frs

\ /
oo\ N oo \

\ /

verif
inputl

\/

verif \

Figure 2.7. Verification Tool Suite.

2.3.2.1 Tool Methodology
This section presents an overview of the theory of operation of the two tools within the

UC Berkeley Verification tool suite. Pre_verif is presented first followed by verif.

2.3.2.1.1 Pre_verif

Pre_verif is a preprocessor for verif which translates a sequential circuit described in the
UC Berkeley netlist into a new file named "verif.input™ which contains the output and next state
cover information and associated minterm lists of the sequential circuit (6). For each output and

next state signal within the state machine, pre_verif extracts input and next state covers which

force the output(s) and next state signals to a fogical one or zero. Additionally, pre_verit extracts a

list of input and next state signals which comprise the minterm variables for each output and next
state signal. A final key piece of information extracted by pre_verif is the sequential circuit's initial

or reset state. This information is stored in the file, verif.input, which is used as the input for verif.

2.3.2.1.2 Verif

Verif takes the cover, minterm, and initial state information generated by pre_verif from
the two sequential circuits and performs the actual verification algorithms. Two algorithms contain
the core of the verification process: Differentiate_States and New_Fanout_Edge. The main
verification procedure is described in the following pseudo-code where M1 and M2 are represent

sequential circuits one and two respectively (6).

verify equivalence(M1, M2)
{
R1 = RESET State of Ml;
R2 = RESET State of M2;
Flag = Differentiate_States (Rl, R2);
if { Flag) |
/* Machines are different */
Print Differentiate_Sequence();
}
else {
/* Machines are the same */
Print_Valid_Invalid State();

The first algorithm, Differentiate_States, determines equivalence on a state by state
basis. Starting with the initial state of each machine, verif sets an output of the first machine to a
logical one. #t zpplies the Path Oriented Decision Making (PODEM) algorithm to determine what
input vector(s) are required to produce a logical one on machine cne's output. Next, verif sets the
corresponding output of machine two to a logical zero. Applying PODEM to the second machine,

verif derives a second set of input vectors which produce a logical zero on machine two's output.

2.15

These two sets of input vectors are compared; if a vector is common to both sets of input vectors,
the two machines are not equivalent and the verification process terminates.

Should the two sets of input vectors not have any vectors in common,
Differentiate_States reverses the above process. The output of the first machine is set to a logical
zero and the output of the second machine is set to a logical one. Sets of input vector(s) are
derived for each machine and, as before, are compared for similar vectors. i a vector is common
between the two sets, the two machines are not equivalent and the verification process
terminates.

If the two states do not fail the input vector tests, then next states within the sequential
circuits are calculated via the New_Fanout_Edge routine and the Differentiate_States routine is
repeated recursively. This process follows paths within the state transition graphs which
represent the two machines terminating a path only if the path doubles back on itself or if the inital
state is reached. The path tracing is depicted in Figure 2.8. Because each verification starts at the
intial state of each machine, the UC Berkeley reports that the verification problem is defined as the

verification of the equivalence of the two sequential circuits' intial (or reset) states.

2.16

Path

0-/01

’ :' -0/10

44— Initial State

1-/10

001

o 1-/10

0-/00

100

Figure 2.8. An Example STG (6).

These algorithms ares presented as the following pseudo-code where S1 and S2 are states of

the two sequential circuits (6).

Differentiate States(S1, S2)

{

if (state pair (S1, S2) have already been examined)
return (Machines_Same);

/* Find input combination which differentiates S1 & S2 */
Flag = Find Differentiating Input (S1, S2);

if (Flag) {

217

/* such an input has been found */
if (inputs is not a don't care for S1 or S2) {
if (output values are not don't cares) ({
Store input as part of differentiating
sequence;
if (no Don't Care sequences)
return (Machines Different);

}
}

Store State pair (S1, S2) in current search path;

/* Find input combination giving a new fanout edge */
DecisionTree = NULL;

S'l = New_Fanout Edge(S1):

S'2 = New_Fanout Edge(52 };

while (CecisionTree != NULL) ({
Flag = Differentiate_States (S'l, S§'2);
if (Flag) {
/* such an input has been found */
if (inputs is not a don't care for S1 or S2)

if (output values are not don't cares) {
Store input as part of differentiating
sequence;

if (no Don't Care sequences)
return (Machines Different);

}

S*'1 = New_Fanout_Edge(S'1);
S'2 = New Fanout_Edge(S$'2);
}

/* If this point is reached, machines are equal */
return (Machines Same);

2.3.2.2 Verification Results
This verification method has shown promising resuits; it has been tested on
various sequential circuits gathered from academia and industry sources with impressive results.
Sample results are presented in Figure 2.9. The CPU times are for a VAX 11/8800 computer.

The quoted units of time are s for seconds and m for minutes.

Circuit #Ilnputs | #Outputs | #Valid States #Edges CPU Time
cse 7 7 16 141 .49s
sse 7 7 13 58 .18s
sand 11 9 32 183 1.34s

planet 7 19 48 142 .99s
sbc.4 33 24 54 19308 115s
sbe. 1 16 1 65 1782 7.46s

scf 27 54 115 274 3.57s

tlc 3 5 400 2000 9.07s
mclc 11 6 35 917 5.17s
sbc.2 31 1 2040 2474094 563m
sbc.3 27 1 2764 1451108 140m

Figure 2.9. Verification Resuits (6).
2.3.3 VHDL

VHDL stands for the Very High Speed Integrated Circuit (VHSIC) Hardware Description
Language. Originally developed by the Department of Defense’s Very High Speed Integrated
Circuit (VHSIC) Program for use as a govemment standard (15), it has been adopted as an IEEE
standard hardware description language (16). This section explains not only why VHDL was
chosen as the specification and design language for this research but also describes some of
VHDL's key features.

2.3.3.1 Why VHDL

As mentioned above, VHDL is the standard hardware description language for both the
government and the IEEE. As such, itis intended to be used not only as a design language, but
also it is intended as a spacification language. VHDL provides language constructs capable of
expressing both a structural design and a behavioral specification. As a standard, its use within
this research effort promotes future acceptance of any products of this research work.

VHDL was not selected purely because it is both a DoD and an IEEE standard. The
language was compared against other aesign languages which are used in academia to describe

sequential circuits. From these comparisons, it became readily apparent that VHDL is quite

2.19

capable of describing sequential circuits both structurally and behaviorally. Two languages, State
Machine Language (SML) and Compositional State Machine Language (CSML.), provide many
equivalent language constructs as VHDL (14, 17). Notably among them are conditional, ioop, and
concurrent statements. Additionally, the UC Berkeley circuit netlist format used by the verification
software contains a subset of the information present in an equivalent circuit described in
structural VHDL.

Further, work performed by both private industry and academia has shown that VHDL is
capable of portraying sequential circuits. Two CAD tool developers are currently providing a
sequential circuit VHDL code generation ability within their graphics-based CAD design
environment (18, 19). The VHDL code which is produced by many designers to represent
sequential circuits falls into two categories: separate procedure calls which represent each state
and inline coding which groups the entire sequential circuit into one large monolithic block of
code. Without delving into explicit explanations oi the VHDL constructs, exampies of these

VHDL sequential circuit specification styles are represented in Figure 2.10.

2.20

process (NEXT STATE) begin
STATE <= NEXT_STATE;

if STATE = SO then
NEXT_STATE <= SI;
Outputl <= '1';
Procedure_State A(signal list);
e - Asig st) else if STATE = Sl then
Procedure_State B(signal list); NEXT_STATE <= S2;
. : t2 <= '1";
Procedure_State B(signal_list); Output2
Procedure_State C(signal list); else if STATE = S2 then
NEXT_STATE <= S1;

Procedure_State_D i 1l list);
rocedure__ e D(signal_list) Outputl <= '0';

Procedure_ State E(signal_list); OQutput2 <= '0°';
Procedure State F(signal list); .
- - - end if;
end if;
end if;
(@)

end process;

®)

Figure 2.10. Two Current VHDL Sequential Circuit Specification Styles.

Unfortunately, there are drawbacks in both code portions of Figure 2.10. The code of Figure
2.10(a) prevents the reéder from developing any high level view of the sequential circuit. The
contents of the procedure calls can be located in separate files or within the same file; whichever,
anyone reading the code would be required to delve through its entirety in order to derive an
understanding of the state transition graph. Likewise, the code of Figure 2.10(b) requires work
on the reader's part to derive the state transition graph. Although 2.10(b) may appear to
succinctly represent its sequential circuit, as the number of states and transitions grow, the code
becomes all the more harder to interpret. Additionally, the VHDL code of Figure 2.10(b) cannot
express separate, concurrent actions within a state. Existing design tools which produce VHDL
code similar to Figure 2.10 use Computer Aided Design (CAD) based state machine editors which

graphically portray the functionality represented by the VHDL code. Without this CAD aid, the

2.21

VHDL code becomes quite cryptic. One goal of this research is to develop a new behavioral
VHDL sequential circuit modelling style which not only contains the same expressiveness as the
existing VHDL sequential circuit models but also does not rely on any graphics-based CAD

environment for improved understanding.

2.3.3.2 VHDL Features
This section details several of the key features of VHDL. It is not intended as a complete
VHDL tutorial. Further information may be found in (15, 16). The language constructs used by

this research can be separated into two categories: structural and behavioral.

2.3.3.2.1 Structural Features

Components within » V" 1UL description are comprised of two parts: the entity and the
architectural body (16° " - a "block box "perspective of the system, the entity is the black box
which describes tie components external interface. The entity provides the input and output
wires (called ports) of the component and a capability of passing various values into the
compenen. A typical entity is expressed as:

entity foo is

generic (
variablel : integer;
variable2 : real := 3.141592654
)
poct (
in_ 1 : in bit := '17;
in 2 : in integer;
out_1 : out bit_vector (2 downto 0)
)
end foo;

This component has three unidirectional "wires:" in_1 and in_2 going into the black box and

out_1 coming out. Of these, in_1 and in_2 are single wires while out_1 is a bundle, or bus, of 3

wires. Two variables, called generics, pass integer and real number information into the black box.

2.22

e

Additionally, one of the wires and one of the generics are initialized. Additional entity features

may be found in (16).

Once entities have defined the component's black box external interface, netlists of

components may be constructed representing the operation of a particular component. For

example, the half adder of Figure 2.11 can be constructed of 3-input AND gates and one 4-input

OR gate:

gl

g2 :
g3 :

g4 :

g5

port
port
port

port

: OR

port

map (

map (

nap (
map (

map (

Anot
Bnot

Anot

Cnot

Bnot
Cnot

Anot, Bnot, C, glout);
Anot, B, Cnot, glout);
A, Bnot, Cnot, g3out);
A, B, C, gdout);

glout, g2out, g3out, gd4out, SUM);

- o1 glout

— 2out
15
———) o5)sum

- g3out

- g4 }———
49 g4out

Figure 2.11. Half Adder.

2.23

For this example, the negated signals are assumed available at the entity's ports. This netlist of
companents representing the internal, gate level functionality of the half adder are "placed inside”

the black box entity via the architectural body construct (16). The architectural body has the form:

architecture STRUCTURAL of half adder is

DECLARATIVE BLOCK

begin
gl : AND

port map (Anot, Bnot, C, glout);
g2 : AND

port map (Anot, B, Cnot, gZout);
g3 : AND

port map (A, Bnot, Cnot, g3out);
g4 : AND

port map (A, B, C, gd4out);
g5 : OR

port map (glout, g2out, g3out, gdout, SUM);

end STRUCTURAL;

The architectural body’s dedlarative block is that portion in which all components and signals are
declared before use. In this case, these declarations would consist of an AND gate, an OR gate,
and the signals g1out, g2out, g3out, and gdout. Itis blank here purely for brevity. Additional
architectural body features may be found in (16).

A powerful feature of VHDL is that it is not limited to purely structural representations of
circuits. A functionally equivalent behavior may be placed inside a black box entity’s architecture
as:

architecture BEHAVIORAL of half adder is

begin

SUM <= (Anot and Bnot and C) or (Anot and B and Cnot) or
(A and Bnot and Cnot) or (A and B and C);

end BEHAVIORAL;

2.24

This architectural body is functionally equivalent to the structural one depicted above. The "wire”
SUM is assigned the value of the booiean equation:

SUM=A.BC+A-B.C+AB-C+ABC
With this ability to model circuits structurally or behaviorally (or with a sprinkling of both), VHDL
offers the ability to specify and design electronic systems over a broad spectrum of the design
hierarchy as depicted in Figure 2.12 (15). Additional key features of behavioral VHDL used in this
research effort will be presented in the foliowing section. Additional information may be found in

(15, 16, 20)

System

Chip

Register Transfer Level

Gate

Circuit

Silicon

Figure 2.12. Design Hierarchy (15).

2.3.3.2.2 Behavioral Features

VHDL offers a wide range of constructs for describing the functionality of a component in
a behavioral fashion. Of importance to this research effort are its ability to model actions which
might take place concurrently with other actions within the component's architectural body; two ot
these constructs are VHDL's process and block statements (16). Additionally, in order to
determine a signal's (or "wire's") value when more than one language construct is attempting to

place a value on that signal (called driving), VHDL provides resolution functions. Each will be

2.25

covered in this section. Further information regarding these constructs and others available within
VHDL may be found in (15, 16, 20).
Representing the functionality of the entity foo presented above, an architectural body

containing separ te process constructs and and one block construct appears as:

arch..ecture EXAMPLE of foo is

begin
process (in_1)
internal variable : integer := variablel;
begin

-- statements go here. See next process.
end process;

process(in_2)
begin
out_1 <= "Q00";
end process;

Al: block (in 1 = '1"')
begin
out_1 <= "111";
end block Al;

end architecture EXAMPLE;

In this example, each construct functions independently of and concurrently with the others
inside the architectural body. Just as for the architectural body, both the process and block
construct have a declarative block and a statement part; for this example the first process contains
a locally declared variable, intemal_variable, which is also initialized to the value of the generic
passed in from the component foo's entity generic. Additionally, each construct possesses a
feature which controls the operation of the construct. For the process statement; that feature is a
set of signals contained within parenthesis after the reserved word process ((in_1) and (in_2)
above). The process construct only operates when a signal within its sensitivity list changes;
otherwise, it sits dormant within the architectural body. For the block construct, a guard statement
(the (in_1 = '1") following the keyword block) signifies a signal GUARD which is set to true if, and

only if, the contents of the guard statement are true. This implied signal GUARD may be used

2.26

within the block to control the block’s operation. As an additional feature, process constructs may
appear within block constructs; but not vice-versa. The procedure calls of Figure 2.10(a) may
appear inside both process and block constructs. it is the former case which is one method
currently used to model sequential circuits as discussed in 2.2.3.1.

Within the example above, the signal out_1 is driven by one of the process and by one of
the block constructs. Both values cannot be present on the signal (or wire) at the same time.
VHDL provides a resolution function to resolve multiple signal drivers (16). Each time a value is
assigned to a signal which has beenr declared with a resolution function, that function is called and
it determines the proper value to place on the signal. A typical example of a user defined

resolution function (which in this case implements a 'wired-or') is:

Function Resolve_Bits (il : bit_vector)
return bit is

begin
for I in il'Range loop
if (1i1(I) = *1') then RETURN il (I);
end if;
end loop;

RETURN '0°;

end;
Here, the resolution function checks each driver attempting to place a value on the signal. If any
of the drivers are attempting to place a logical '1' on the wire, that value is placed on the wire,
otherwise, a logical '0' is placed on the wire.

The process, block, and resolution function features of VHDL play a key role in the
development of the behavioral VHDL sequential circuit model discussed in the next chapter.

Further information regarding these constructs and others available within VHDL may be found in

(15, 16, 20).

]

3 Sequential Circuit Modeling via VHDL

In this chapter, the VHDL models which are used in this thesis effort to support sequential
circuit specification and design are described. Two models were developed; one for behavioral
specification and another for structural design. These two models are capable of supporting a
wide range of sequential circuit types. These types support both synchronous or asynchronous
operation. Because this thesis effort is intended to demonstrate equivalence of sequential
circuits described via VHDL, the behavioral and structural models employ specific VHDL
constructs chosen to facilitate the equivalence demonstration. Hopefully, future revisions of the
validation software will increase the language coverage to full VHDL 1076. The model restrictions
are explained as each model is presented. Additionally, the behavioral model is geared towards
clear specification of a design. Although upon first examination of the behavioral model this may
appear to sacrifice succinctness for verbasity, the underlying requirement of the behavioral model
is to be an easily readable, comprehendible, and stand alone specification. Each model is

presented in the same fashion; first tha model's concept is explained followed by an example.

3.1 EIA Conventions

To provide a degree of standardization between the behavioral and structural elements of
a design -- and, for that matter, between entity and architectural revisions of the same design -- the
EIA Commercial Component Model Specification SP-2229 was adopted as a standard
convention. This standard specifies certain design conventions and indudes a seven-level logic
value family with supporting resolution, operator, and overloaded operator functions. Although
this standard is intended to define the design's contents and acceptance criteria for commercially

manufactured components, it is quite applicable to this effort. Several deviations were made from

3.1

the standard, but they are explained and justified when presented. The complete EIA VHDL

standard package is attached as Appendix A.

3.2 The Model's VHDL Entity
This section describes the VHDL entity proposed for sequential circuits. It is intended for
use with both the behavioral and structural architectural bodies and is described here to present a

complete picture of the sequential circuit's VHDL model.

3.2.1 Entity Concept

The entity utilized in this effort follows the EIA guidelines with one major exception. The
EIA standard specifies that every signal into or out of an entity should be a scalar signal. This
requirement is levied by the EIA in order to provide a one-to-one correspondence between an
electronic component's signals and that same component's packaging pins. In this thesis effort,
this requirement was relaxed in order to permit vectorized entity ports. This decision is not
contrary to the EIA standard. Logic cells within a component's architecture could readily employ
vectorized ports on their entities as long as the "off-component” ports are scalars. Further, this
port mode choice is bolstered in that at least one commercial vendor, ZYCAD, utilizes vectorized
ports in their logic cell family (21). Finally, allowing vectorized ports permits a more robust software
interface to the verification software as shall be seen in Chapter 4. As a last comment, VHDL
generics are permitted within the entity as witnessed in the following example, but are curmrently

ignored by the validation software.

3.2.2 Entity Example

Following the guidelines described above, a typical VHDL entity can be constructed as in

the following example:

3.2

use work.Sequential Circuit_ Package.all;
-- This package makes the appropriate type and
-- variable declarations required for the
-- particular state machine. See text below.

use EIA.BASICDEFS.all;

-- The BASICDEFS package is presumed located
-- in a VHDL design library sublibrary named EIA.

entity Sequential Circuit is

-- generic|();

port
input_1 : in logic_mv = 'X';
out 1 : out logic_mv := 'X*;
out 2 : out logic mv := 'X';
out 3 : inout logic mv := 'X’';
RESET : in logic mv = 'X';
clock : in logic:mv = 'X!

) :

end Sequential Circuit;

The Sequential_Circuit_Package package referenced in the above example is used to
enumerate state names, transition labels, constants, a transition resolution function, and any
other variables, constants, functions, or procedures required by the sequential circuit's entity
and/or architectural body. Although several examples are presented in this thesis, the
Sequential_Circuit_package package is intended to be taiiored to the specific application.
Further information is provided in Section 3.3.2.1 regarding this package's contents including a

sample package development.

3.3 VHDL Behavioral Architectural Body
This section describes the behavioral VHDL model proposed for specifying sequential
circuits. First, the model's overall concept is described including code fragments which support

its functions followed by an example.

3.3.1 Behavioral Model Concept
Figure 3.1 represents a simple sequential circuit: two possible states and one possible
transition between the two states. The depicted sequential circuit is comprised of two

components -- states and transitions.

° States
° \ Transitions

Figure 3.1. Simple Sequential Machine and Its Component Pieces.

Utilizing VHDL's block and process constructs, an architectural specification based on the state
diagram may be decomposed into these same two components. Using this methodoiogy, all
transitions between states are handled by one VHDL process; state activities are handled by
separate VHDL blocks, one per state. The partitioning of state to state transition information into
one VHDL process permits a more succinct description the circuit's state machine diagram than
those methods discussed in Section 2.2.3.1. This concept wil be further detailed in Section
3.3.1.1. Any additional actions, such as clock synchronization, global reset or set, test circuitry,
efc, may also be included as concurrent VHDL blocks within the behavioral architecture. Using

this method, the behavioral architectural body's skeleton form for the entity Sequential_Circuit is:

architecture behavioral body of Sequential Circuit is
-- Declarative Block

begin
process (transition)

begin
end;

34

FIRST:block (Present_State = First_State)
begin
end;

Second:block (Present_ State = Second_State)
begin
end;

nth block:block (Present_State = nth state)
begin
end;

process (clock)
begin
end;

RESET_BLOCK:process (RESET)
begin
end;

end behavioral body:

By using sensitivity lists on processes and guard statements on blocks, the processes and blocks
function concurrently. The contents of the processes and blocks within the context of the
behavioral model are described in the following sections.

This methodology was chosen in that it presents the design as an assemblage of smaller
pieces -- basically states and transitions -- while at the same time each piece succinctly specifies its

own actions. Transitions, states, and other concurrent actions are described as follows.

3.3.1.1 Transition Process

The transition process withir the behavioral architectural specification is used not only to
resolve all state-to-state transitions of the sequential circuit, but also to present in simple fashion a
skeletal structure of the overall sequential circuit. The former is required for the machine to
function; the latter succinctly presents the overall machine in a quite human-readable form. In
terms ot design specification, the ease in extracting the overall machine diagram is paramount —

no CAD based software tool is required to graphically clarify the state machine design as required

35

in other sequential circuit specification styles. Separating the state-to-state transition from its
respective state provides a clear method to provide a "snapshot” of the design. In other words, a
designer can readily sketch the sequential circuit's state machine diagram from the transition
process block.

Figure 3.2 shows a sample sequential machine. For this example, only state-to-state
transitions are labeled; no output signal lines are present. Further, the existence of transition,
Present_State, and Next_State signals, whose types are enumerated in the
Sequential_Circuit_Package included in the entity description, are assumed. Visibility into this
package is accomplished by the appropriate VHDL use statement at the architecture’s entity. The
types enumerated in the Sequential_Circuit_Package are:

Type Transition Conditions is (

No_Transition,
goto First State,

goto_Second_State,
goto Third_ State

)

Type States is (
Unknown_State,
First_State,
Second_State,
Third_State
);

No_Transition and Unknown_State are provided for the situation where no transition occurs
between states and for power-up when the machine is in an unknown, or uninitialized, state. With

this information, the skeletal sequential machine can be readily constructed from the transition

process.

goto_Third_State

goto_Third_State

goto_Second_State

goto_First_State goto_Second_State

goto_First_State

Figure 3.2. Skeletal State Machine.

A VHDL transition process representing this machine is :

process (transition) begin
case Present_ State is
when First State =>
case transition is
when goto _second_State =>
Next_State <= Second_State;
when goto_Third State =>
Next State <= Third State;
when others =>
end case;

when Second_State =>
case transition is
when goto First state =>
Next State <= First_State;
when goto_Third state =>
Next State <= Third_State;
when others =>
end case;

when Third State =>
case transition is
when goto_ First_state =>
Next State <= First State;
when goto_Second_state =>
Next State <= Second_State;
when others =>
end case;

when Unknown_State =>
case transition is
when goto First state =>
Next State <= First_ State;
when others =>
end case;

end case;
end process;

3.7

Although this transition process reveals no information concerning the intemal workings of the
machine's states, it's apparent from this example that it clearly describes the overall machine

diagram - a very useful feature for creating a lucid design specification.

3.3.1.2 State Blocks

The individuai states of the sequential circuit are represented by VHDL block constructs.
For the simple Moore or Mealy sequential circuit, these blocks simply set the values of the output
signal(s) and test for the transition condition(s) into another machine state. More complex designs
may contain multiple concurrent activities represented as VHDL processes operating within the
state's block. In the extreme, this behavioral model allows hierarchical state machines whereby
entire state machines may be nested within state blocks.

To permit this type of operation two conditions must be met by the state block. For the
first condition, each signal which is driven by more than one state block must be provided with two
features. Each multiply-driven signal must have a bus resolution function. An example transition

resolution function used throughout this research is:

3.8

Function Transition_ Resolution (il : Transition_Conditions_vector)
return Transition Conditions is

begin
for I in il'Range loop
RETURN i1 (I);
end loop;

RETURN No_Transition;
end;

This function assumes that one, and only one, state block will be making an assignment to the
Transition signal. This is guaranteed by requiring that any non-executing state must disconnect
its signal driver from the Transition signal by the assignment of null (as shown in the state block
example to follow).

The second condition to meet requires that each state block's operation pe aetermined
by the value of a guarded signal which checks the present state of the sequential circuit. The
guard signal will be true only if the the circuit's present state is the same state represented by the
block. Processes within the state block check this guard signal and execute only when the guard
statement is true. Given this, a simple state example which assigns the value '0' to its output
(represented by Machine_output) and transitions inio a second state when the input signal is a

"11" vector is:

FIRST:block (Present_State = First_State) begin

process (GUARD, INPUT_ signals) begin
if GUARD then
Machine output <= '0°';
if INPUT signals = "11" then
Transition <= goto_Second_State;
end if;
else
transition <= null;
Machine_output <= null;
end if;
end process;

end block FIRST;

3.9

In this example, the state "operates” when its guard statement,
Present_State = First State
is true. If false, the process assigns null to both transition and output signals.
More complex state blocks may include one or more concurrent process blocks; or, in the
extreme, a state machine represented by its own transition process and state blocks. A multiple

process state block could appear as:

READ Instruction: block (Present_ State = READ Instruction State) begin
process (GUARD) begin
if GUARD then
Control <= C9_C3;
else
Control <= null;
end if;
end process;

process (Clock)
variable clock_count : integer := 0;
begin
if GUARD and negedge(clock) then
clock_count := clock count + 1;
if clock_count = 2 then
clock _count := 0;
Transition <= goto_IR_gets DR OP;
end if;
else
Transition <= Null;
end if;
end process;

end block READ Instruction;

In this example, the first process (sensitive to the state's guard statement) simply assigns an
output to the Control line. The second process (sensitive to the negative edge of the clock and
checking the value of GUARD on each execution) counts two clock pulses before making the
transition assignment out of the READ_Instruction state. Note that both processes assign null to
the Control and Transition signals during the else clause of their conditional statements. This

requirement is levied by the chosen transition resolution functions.

3.10

By permitting multiple processes or nested blocks within the state block, the behavioral
model aliows for a flexible design style -- hierarchical decomposition is easily achieved. But, one
must be careful in using the model not to deviate irom the model's primary intent: clear behavioral

specification.

3.3.1.3 Additional Concurrent Actions

This section describes any additional concurrent blocks or processes that may be
included in the behavioral architectural specification. This is not an all inclusive set of additional
concurrent processes or blocks -- these are the essential elements to complete the proposed
behavioral VHDL model. Although a designer could easily add any number of additional
processes or blocks, succinctness and clarity shouid be maintained.

As stated earlier, this behavioral model supports both synchronous and asynchronous
operation. This feature is accomplished by the following process. Operating concurrently with
the transition process and state blocks, this process synchronizes the state transitions to the

clock.

process (clock) begin
: if (clock = '1l' and clock'event)
then Present State <= Next_ State;
end if;
end process;
By removing *his process from the sequential circuit's architectural body and changing the
concurrent transition process' signal assignment statement from:
Next_ State <= some_state;
which assumes that the variable Present_State is assigned in the clock process te:
Present_ State <= some_state;

the sequential machine becomes asynchronous. Appendix B contains an asynchronous

example.

Additionally, a reset or initialize capability can be provided in a like manner. Another
process operating concurrently with the transition process and state blocks provides this global
reset and initialize capability:

-- initialize and reset capability

RESET BLOCK:block (RESET = 'l') begin

process (GUARD) begin
if GUARD then
Transition <= goto_First_State;
else
Transition <= null;
end if;

end process;

end block RESET_BLOCK;

Again, the model's capabilities are up to the individual designer, these simple cases have

been presented only as example.

3.12

3.3.2 Behavioral Model Example

While simple in concept, the VHDL behavioral model is capable of specifying many
different types of sequential circuits: Moore, Mealy, "hierarchical® Moore and Mealy, and "hybrid”
machines. The "hierarchical” machine implies state machines nested within states of the
sequential circuit; the hybrid machine implies multiple concurrent processes within the states of
the state machine. All these machines may be either synchronous or asynchronous. The
following example is a synchronous control unit for a simple eight-instruction CPU. Chapter 5 and
Appendix B contains further examples of various types of sequential machines designed using

this behavioral model.

3.3.2.1 CPU Controller
The following example taken from (22) is a CPU controller intended to operate as a

controller for an eight-instruction CPU. The CPU is to perform the following instructions:

LOAD X transfer contents of memory location X into accumulator.

STORE X transfer contents of accumulator to memory location X.

ADD X Add contents of memory location X to contents of
accumulator and store in accumulator.

+ND X Logical AND the contents of memory location X with the
contents of accumuiator and store in accumulator.

JUMP X Unconditionally branch to the instruction stored in memory
location X.

JUMPZ X If the accumulator equals zero (as specified by the zero
flag), branch to the instruction stored in memory
location X.

COMP Complement the accumulator’'s contents and store in
the accumulator.

RSHIFT Right-shift the contents of the accumulator and store in

the accumulator.
Given this instruction set, Figure 3.3 presents a block diagram of the CPU as specified in (22).
One hardware constraint not depicted in Figure 3.3 demands that all micro-operations require one
clock cycle except for memory accesses which require two clock cycles. Finally, control signals
must remain valid for the entirety of the micro-operation. The goal, then, is to design a sequential

circuit which performs the control unit functionality as depicted in Figure 3.3.

3.13

The first step in the design process is to develop the control unit's entity description. This
is accomplished simply by matching signals depicted in Figure 3.3 to ports on the entity.
Additiunally two assumed signals, reset and clock, which are not shown in the figure, are included
in the control unit. The clock signal will be used to synchronize the sequential circuit's state
transitions and control signals; reset will be used to initialize or force the control unit into a known

initial state. Further, the reset signal will be developed as an asynchronous signal not dependent

on the clock.
AC =0
< Arithmetic- [€—— co (add)
loglc i d—— C1 (and)
ca circuits C2 (comp)
C3
(read)+ (write) A A
. 3 AC [€-C12
Main é (
memory > D < cé
M < R . c11
C7 cs
T IR
A
R [€— PC l

f Control —» Co

thru
Cc10 co Zero Unit Ct12
Flag

Figure 3.3. Block Diagram of the Eight-Instruction CPU (22).

The entity description is then:

use work.BASICDEFS.all;

-~ Again, BASICDEFS is the EIA's BASICDEF package.
use work.CPU_package.all;

-~ The CPU's Sequential Circuit_Package.
entity CPU_CONTROLLER 1is

-- generic ();
port (instruction : in instructions := NOP ;
CLOCK ¢ in logic_mv;
RESET ¢ in logic_mv ;
ZERO_FLAG : in logic_mv;
Control bus : out logic mv_vector_bus (12 downto 0)

R 6.0:0:0.0.0.00.000.0 4
end; '’
The ports are defined as follows. Instruction is an enumerated set of instructions. The
instructions type will be developed shortly in the Sequential_Circuit_Package named
CPU_package. Clock, RESET, and ZERO_Flag are all multi-value logic scalar signals. Finally,

Control_bus is a multi-value logic vector of signals representing the CPU's control signals C12,

C11, ..., CO. Figure 3.4 shows the control signal to CPU micro operation relationship.

co AC <- AC + DR
C1l AC <- AC AND DR
c2 AC <- NOT AC
C3 DR <- M(AR) = READ M
C4 M(AR) <- DR = WRITE M
Cc5 DR <- AC
cé6 AC <- DR
c7 AR <~ DR (ADR)
cs8 PC <- DR (ADR)
C9 PC <~ PC + 1
Cc10 AR <- PC
Cl1 IR <- DR(OP)
Cc12 RIGHT-SHIFT AC
where AC = Accumulator
DR = Data Register
AR = Address Register
PC = Program Counter
OP = Op Code

ADR = Address

Figure 3.4. Control Signal to CPU Micro-operation Relationship (22).

3.15

Next, a state diagram must be derived from the behavior of the sequential circuit. This
behavior is shown in Figure 3.5 (22). It's important to note that at this point in the behavioral
architecture's development, the design can be written several ways. One method produces a
"hybrid® Moore sequential circuit where each micro-operation represents a state of the sequential
circuit. An alternative method uses a nested state machine approach. Here, the top-level state
machine would have two states: Fetch and Execute. These two states break the CPU's behavior
into two distinct phases. implemented in this manner, the Fetch and Execute states would
contain their own state machines each issuing respective control signals synchronized with the
proper clock cycles. As a final altemative, the behavior could be developed as a state machine
possessing, at a minimum, eight states. Each state represents one member of the CPU's
instruction set of LOAD, STORE, ADD, AND, JUMP, JUMPZ, COMP, and RSHIFT. The
behavioral model presented in this thesis is quite capable of modeling the controller in these
different abstractions of its behavior. For the sake of a simple example, however, the first method
will be developed: each micro-operation will represent a state of the sequential circuit. Given this,
a state machine diagram representing this design is shown in Figure 3.6. Not shown are each
state’s RESET transitions into the "AR <- PC state.”

The Sequential_Circuit_Package can be developed directly from the state machine
diagram. Named CPU_package for this example, this package enumerates the states, transition
conditions, and instructions for the controller. Additionally, it declares ancillary constants and
functions. Thin CPU_package, along with the entirety of the CPU controller's VHDL code is
presented in Appendix B.

Once the CPU_package has been developed, the skeletal VHDL code which represents
the CPU controller can be fleshed out from the clock and reset processes, a transition process,

and eleven state blocks. The skeletal structure is:

3.16

architecture BEHAVIORAIL of CPU_CONTROLLER 1is
begin
CLOCK_SYNCH:process (clock}
begin
end CLOCK__SYNCH;
RESET BLOCK:process (RESET)
begin
end;
process {(transition)
begin
end;
AR_gets PC:block (Present_State = AR gets PC State)
begin
end AR_gets PC;
READ Instruction:block (Present State = READ Instruction_State)

begin
end READ Instruction;

RIGHT SHIF AC:block (Present State = RIGHT SHIF AC_State)
begin
end RIGHT SHIF_AC;

end BEHAVIORAL;

The Clock_SYNCH and RESET_BLOCK processes are similar to those presented earier in this
chapter. For completeness, the -.re included in Appendix B. Of prime importance, now, is the

development of the transition

3.17

1

1 1

1

[wovma>oa | fuoawovoov | [worovoov | [wamw | [woov |
A 1 1 A 1
[row | [wow | [ovow | | wom |
1 1 il 4
—EQ;S.VS _ _ .Ssxn,_.v,: _ Txos,x”vs _ _EQEM.VS _
dwnr gq aav 3H01S avon
4

Figure 3.5. Controller's Behavioral Operation (22).

3.18

PC <-PC +1

AC <-AC ANDDR

Figure 3.6. CPU Controller State Machine Diagram.

process. This process can be taken directly from the state machine diagram. Not labeled in the

figure, the transitions are:

No_Transition,
goto_RESET,
goto_AC_gets DR,
goto_ARC_gets AC plus_DR,
goto_AC_gets AC_and DR,
goto_IR gets DR _OP,
goto_AR_gets DR_ADR,
goto_AR_gets PC,
goto_AC_gets NOT_AC,
goto RIGHT SHIFT_AC,
goto_Write M,

goto READ M,
goto_DR_gets AC,
goto_READ_INSTRUCTION, and
goto_JUMP

Following the format described in Section 3.3.1.1 and recording the transitions from state to state,

the transition process is of the form:

process (Transition) begin
case Present State is
when AR gets PC_State =>
case Transition is
when goto_RESET =>
when others =>
end case;
when READ_INSTRUCTION_State =>

case Transition is
when goto_IR gets DR OP =>

when goto RESET =>
when others =>

end case;

when IR_gets DR _OP_State =>
case Transition is
when goto_AR_gets_DR_ADR =>

when goto AR gets_PC =>
when goto_JUMP =>

when goto_ AC _gets NOT_ AC=>
when goto_ RIGHT_ SHEIFT AC=>
when goto_ RESET =>

when others =>
end case;

. -- clarity’'s sake. See Appendix B.

when others =>
end case;
end process;

3.20

Next State <= AR _gets PC_State;

Next State <= READ_INSTRUCTION_State;

NEXT_STATE <= IR gets DR OP_State;

Next State <= AR gets PC_State;

NEXT_STATE <= AR gets DR ADR State;

NEXT STATE <= AR gets_PC_State;

NEXT_STATE <= JUMP_State;

REXT_STATE <= AC_gets NOT AC_State;

NEXT_STATE <= RIGHT_SHIFT_AC_State;

Next State <= AR gets_ PC_State;

-- Remainder of transition process deleted for

Finally, the state blocks can be fleshed out. Two representative states, AR_gets_PC and
READ_M, are presented to exemplify the controller's behavioral development. Again, the
controller's complete VHDL code is presented in Appendix B along with a sample simulation
report of its operation.

The first state, AR_gets_PC_State, sets C10 equal to '1' and all other control lines equal
to a'0." Additionally, transitions are made unconditionally from this state to either itself (the
RESET condition) or into the READ_lInstruction state. RESET is handled globally by the reset
process,; but, the Transition signal must be set by the AR_gets_PC_State. Furthermore, when
not in the state, the drivers on the signals Transition and Control must be assigned null values.

The VHDL code representing this state is:

-—- AR _gets PC state
AR_gets_PC: block (Present_State = AR gets PC_State) begin
process (GUARD) begin
1f GUARD then
Control <= C10; -- Cl10 defined in CPU_package
Transition <= goto_ Read_Instruction;
else
Transition <= null;
Control <= null;
end if;
end process;
end block AR gets PC;

The READ_INSTRUCTION_State is slightly more complex and is a good example of the
behavioral model's specification capabilities. As in the previous state example, the control signal
must be set ; a straightforward process. Any memory access, however, must take two clock
cycles to account for the slower nature of the CPU's memory. Because
READ_INSTRUCTION_State accesses memory, this two clock cycle time delay is accomplished
by an additional process within the state block that counts clock pulses (in this case negative

edges) and only permits the transition signal to take place after two dlock cycles have elapsed.

3.21

The function negedge() is defined in the EIA’s BASICDEFS package included in Appendix A.

The READ_INSTRUCTION_State's VHDL code is:

-=- READ INSTRUCTION state
-- This state not only reads the instruction from memory,
- but also increments the PC.
READ Instruction: block (Present_State = READ Instruction_State)
begin
process (GUARD) begin
if GUARD then
Control <= C9 C3; -- Defined in CPU_package.
else
Control <= null;
end if;
end process;

process (Clock)
variable clock_count : integer := 0;
begin
if GUARD and negedge(clock) then
clock_count := clock_count + 1;
if clock_count = 2 then
clock_count := 0;
Transition <= goto_IR gets DR OP;
end if;
else
Transition <= Null;
end if;
end process;

end block READ_Instruction;

Following this methodology, the VHDL code for the remaining states is constructed in a similar
manner. It is apparent from this example that this behavioral modet not only permits a straight-
forward construction method but also provides a clear presentation of the sequential circuit's
behavior. The complete VHDL code and a sample simulation report for the CPU controller is in

Appendix B.

3.4 VHDL Structural Architectural Body

This section describes the structural VHDL moa. . ior designing sequential circuits. First,

the logic gate selection and their selection rationale are explained followed by an explaination of

3.22

the architectural body's structural layout and overview of allowed language constructs. Finally, an

example using the defined logic gates and structural architecture is presented.

3.4.1 Structural Model Concept

The components chosen for the structural model are directly related to the capabilities of
UC Berkeley's verification tools: Senum, Pre_Verit, and Verif. These programs’ input format can
be compared to a structural VHDL description in that their input file formats describe a netlist of
components. Those components recognized by the UC Berkeley tools consist of inverters,
ANDs, NANDs, ORs and NORs. Additionally, two flip-flops are supported: docked and
asynchronous D flip-flops. To serve as a proof of concept, then, the structural VHDL model was
choosen to closely follow the UC Berkeley input format; entities have been described paralleling
the recognized components. Additionally, simplistic architectures that mimic the component's
functional behavior have been produced to support VHDL simulation. These architectures do
not include propagation delay or other timing information; but "generic hooks" are provided for
future work. Two sample components follow: an AND gate and a clocked D flip-flop; a complete
list of components along with their VHDL code is provided in Appendix C. As described in
Section 3.2.1, all entities use vectorized entity ports where appropriate. This typing is not
contrary to the EIA standard and is quite appropriate for these logic devices.

First, the AND gate:

ure work.BASICDEFS.all;
-- the EIA basicdefs package

entity ANDm is
generic(
propagation_delay : time := 0 ns
):
port (Inl : in logic mv_vector ;
outl : out logic_mv := 'U’
):
end ANDm;

3.23

As for all components, a behavioral architecture was developed purely to permit VHDL simulation.

The AND gate's archtecture is:

architecture BEHAVIORAL of ANDm is
begin

outl <= and bw(Inl) after propagation_delay;

end BEHAVIORAL;

The function and_bw() is defined in the EIA's BASICDEFS package.
The second example is a clocked D flip-flop. Again, its architectural body was developed
to support VHDL simulation. it is represented as:

use work.BASICDEFS.all;
-- the EIA basicdefs package

entity D _ff is

generic (propagation_delay : time := 0 ns);
port (

D _in : in logic_mv t= U,

Q out ¢ out logic mv = 'U';

CLK : in logic_mv = U,

Clear : in logic_mv = 'U';

SET : in logic_mv = 'y

)s
end D_ff;

architecture BEHAVIORAL of D_f£f is

begin
process (CLK)
begin
if (CLK'event and CLK = 'l') then
if ((Clear = '1') and (SET = '1')) then
Q_ocut <= 'X' after propagation_delay; end if;
if {((Clear = '0') and (SET = '1')) then
Q out <= 'l' after propagation_delay ; end if;
if ((Clear = 'l') and (SET = '0')) then
Q out <= '0' after propagation_delay; end if;
if ((Clear = '0') and (SET = '(0')) then
Q out <= D_in after propagation_delay; end if;
end if;
end process;
end BEHAVIORAL;

3.24

The currently permitted components and their function are:

INVERTER
AND2
ANDm
OR2
ORm
NAND2
NANDmM
NOR2
NORm
D_tt
D_ft_noclk

single input, single output inverter
two input AND gate.

vectorized input AND gate

two input OR gate

vectorized input OR gate

two input NAND gate

vectorized input NAND gate

two input NOR gate

vectorized input NOR gate

Clocked D flip-flop with Set and Clear
Asynchronous D flip-flop with SET and Clear

3.4.2 The Structural Architectural Body

The structural architectural body performs two roles. First, it completely specifies the

sequential circuit in VHDL. This permits testing via the VHDL software environment. Second, by

accomplishing the first goal, it contains the basic information required by the Senum, Pre_verif,

and Verif software. This is accomplished via the component netlist, the initialization statements,

and the D flip-fiops. The initialization statements allow the UC Berkeley software access to the

machine's initial state; the D flip-flops provide state information.

3.4.2.1 Instantiated Components

Instahtiated components are declared in the VHDL norm:

name : component name

generic map (generic_assignments);
port map (port_assignments);

Currently, only positional association of the signal to port assignments is permited. A sample

component is:

invl : inverter

port map (Q2, Q2not);

3.25

3.4.2.2 Bus Support
Busses within a design are required when vectorized-input logic gates are used. They
are declared as logic_mv_vector type in the architecture's declarative block and comprised of the

concatenation of scalar signals within the architecture. An example is:

BUS <= instruction & Ql & QZ2not;

The bus is then used as an irput to the vectorized logic gates:

gatel: ANDm
port map (BUS, gatel out);

3.4.2.3 Initlalization
In order to properly simulate via VHDL or verify via the UC Berkeley software, the

sequential circuit's initial or starting state must be known. This can be accomplished several ways
in VHDL. Multiplexed logic driving the flip-fiops, SET and CLEAR lines on the flip-flops, etc - but
each clearly specifies the hardware and its interconnections. The chosen approach provides the
initial state information while not specifying the initialization method. Initialization is accomplished
via signal assignment statements within the architecture. Two methods are permited. Each
method assigns "initial values® to the flip-flop outputs (designated as q's); this initial value is
removed after the first clock triggers the flip-flop after some time_delay. The following examples

set the initial state of the six flip-flop circuit to "101001". The first example explicity sets the intial

state at simulation start; the second when the entity port signal "INITIALIZE" is a logical one:

Example One:

Qinit <= "101001", "zzzzzZZ" after time delay;
q0 <= Qinit (0);
gl <= Qinit (1);
g2 <= Qinit (2);
g3 <= Qinit (3);
g4 <= Qinit {4);
g5 <= Qinit (5);

Example Two:

with INITIALIZE select
Qinit <= "101001"™ when '1l’',
"222222" when others;
g0 <= Qinit (0);
ql <= Qinit (1),
g2 <= Qinit (2);
g3 <= Qinit (3);
g4 <= Qinit (4);
g5 <= Qinit (5);

3.4.3 Structural Model Example
The following example is an implementation of a sequence detector using AND-OR logic.
The circuit is intended to detect the input bit string "1001." Figure 3.7 shows the state machine

diagram which models this circuit. From the diagram, the machine possesses four states which are

implemented as two flip-flops. Further, state variable assigment is as follows:

State Varigble
Starting State 00
Detected 1 o1
Detected 0 11
Detected Second 0 10

Figure 3.8 shows the schematic diagram of one implemetation of the sequence detector using D

flip-flops and AND-OR gates.

Xin

Clock

Y Q
Qal
F1
CLK
Set Clear
Y Q
¢~
(2]
CLK

Figure 3.8. And-Or Implementation.

3.28

From Figure 3.8, the entity description is straighforward:

use WORK.basicdefs.all;
entity Sequence Detector is
-- generic ():;

port
Xin : in logic_mv = 'y,
CLOCK : in logic_mv = 'U’;
Zout : out logic_mv = 'U';
SET : in logic_mv = 'y’;
CLEAR : in logic_mv = 'U’

end Sequenc;iDetector;

Following the model guidelines, the architectural body sans declarative block follows.
The complete VHDL Sequence Detector description along with test bench and sample simulation
report are contained in Appendix C. Additionally, Appendix C contains a behavioral equivalent
model using the propose d behavioral model of Section 3.3. Both the structural and behavioral
designs were demonstrated equivalent via VHDL simulation on the same test bench. Both VHDL
simulation results are included in Appendix C.

First, because of the vectored inputs to the AND and OR gates, signals intemal to the
structural description are declared within the architectural body’s declarative block. These signais

are:

signal Y1, Y2, Q1l, Q2 : logic mv := 'U';

signal Xnot, Qlnot, Q2not,
AND1_output : logic_mv := 'U';

signal ANDl_input, AND2_input,
OR1l_input : logic_mv_vector (1 downto 0) := "UU";

sigral AND3_input : logic_mv_vector (2 downto 0)
:= "yuun";

signal Qinit : Wired Outputs logic _mv_vector (1 downto 0)
= UUT;

3.29

Next, the initialization signal is constructed as:

Qinit <= "101001%, "Z2ZZZZ" after 10ns;
q0 <= Qinit (0);
ql <= Qinit (1);
q2 <= Qinit (2);
g3 <= Qinit (3);
qé4 <= Qinit (4);
g5 <= Qinit (5);

Finally, the following VHDL code reflects the schematic diagram of Figure 3.8.
invl : inverter
port map (Q2, Q2not);

inv2 : inverter
port map (Xin, Xnot);

inv3 : inverter
port map (Ql, Qlnot);

--- Logic to derive Y1 and YO:
AND1l_ input <= Ql & Q2not;

AND1 : ANDm
port map (AND1_input, AND1l output):;

OR1l_input <= Xin & ANDl output;

ORl1 : ORm
port map (ORl_input, Y1);

AND2 input <= Xnot & Ql1;

AND2 : ANDm
port map (AND2 input, Y2);

--- LOGIC to derive Zout
AND3_input <= Xin & Qlnot & Q2;

AND3 : ANDm
port map (AND3 input, Zout);

--- Registers

FFl : D_ff
port map (Y1, Q1, CLOCK, CLEAR, SET);

FF2 : D ff

port map (Y2, Q2, CuLOCK, CLEAR, SET);

The entire VHDI. code for this example can be found in appendix C.

3.30

4 Verification Software

This chapter not only describes the modifications made to the existing UC Berkeley
verification software in order for this software to utilize VHDL, but also, details the translator
created for this thesis in order to translate behavioral to structural VHDL. The software
modifications made enable the pre_verif software to accept structural VHDL designs expressed in
the structural format of Chapter 3; the translator transforms sequential circuit specifications
expressed in the behavioral VHDL model of Chapter 3 into an equivalent structural VHDL design.
This new structural description can then be verified against another structural description. First
the verification software environment is presented overviewing the relationship of the software
components to the verification process. Then, the pre_verif modifications are presented followed

by the behavioral to structural (b2s) translator software.

4.1 The Verification Software Environment

This section describes the verification software environment consisting of UC Berkeley's
pre_verif and verif software tools and the b2s software. An example verification process of two
sequential circuits, one described using the behavioral VHDL model and the other using the
structural VHDL model, is used to describe the verification software environment. Figure 4.1
represents the functional relationships of the software components of the verification
environment. The verification proceeds as follows. As depicted in Figure 4.1, the behavioral
model is contained in file 1, the structural model in file 2. First, the behavioral model is transiated
into a structural model via the b2s software. Next, pre_verif generates a verif input file from the
new structural model of the behavioral description. Pre_verif is executed again, but now a second
verit input file is generated from the second structural model contained in file 2. Finally, the verit

software is executed on the two verif input files to show the equivalence or non-equivalence of

4.1

the two sequential circuits. Refer to Appendix D for a more in-depth step through of the

verification process.

4.2 Structural Translation

The structural VHDL translation by pre_verif is precipitated by the notion that a structural
VHDL description contains the requisite information contained in a similar design expressed in the
original pre_verif UC Berkeley input netlist format. This section is divided in two parts. The first
shows that the pre_verif input netlist format contains information equivalent to that of a similar
VHDL description; the second provides both an explanation of the modifications made to
pre_verif to accept a VHDL description and a detailed format for a VHDL description accepted by

the new pre_verif.

4.2

/ sraea /

Zandurx Tandut
FTaRA FTaea

/ Ftaeaead //u..nuo>cum /

ﬁ

sid

1 21901 [t——

ﬁ

o & |

(R

21901 lt———

!

\

szq /

ﬁ

Figure 4.1 Verification process flow.

4.3

4.2.1 VHDL mappings to UC Berkeley Netlist

A pre_verit input file presents a structural description of a sequential circuit. The file
contents can be divided into seven types of information which are:

comment lines (denoted by the symbol #),

combinational logic gate instantiations (denoted by the symbol g),

input signals (denoted by the symbol i),

output signals (denoted by the symbol 0),

next state information (denoted by the symbol n),

present state information (denoted by the symbol p), and,

initialization information (denoted by the symbol 1).
The input file is position sensitive regarding these symbols in that the first character on each new
line must be with one of these seven symbols. Additionally, the first line of a pre_verif input file
must contain the circuit name as:

name circuit_name
where circuit_name is the user defined name for the sequential circuit.

Inputs to the sequential circuit are detined as:

i circuit_input_1 circuit_input2 ... circuit_input_n
where circuit_input_1 through circuit_input_n are unique names defining the sequential circuit's
input signals.

Circuit outputs are defined in a like manner:

© circuit_output 1 circuit output2 ... circuit output_n
where circuit_output_1 through circuit_output_n are unique names defining the sequential
circuit's output signals.

A combinational logic element is defined as:

gname TYPE input_1 input_2 ... input_n ; output

4.4

where name is a unique user defined name to identity the particular logic element. TYPE is the
element type: BUF (for buffer), AND, OR, NOT (for inverter), NOR, and NAND. The logic element
may have any number of inputs (as signified by input1 input2 ... input_n) and only one output (as
signified by output). Input and output lines must have unique names and are differentiated as
input or output signals by a semi-colon. Those signal names before the semi-colon are inputs to
the logic element; the signal name after is the output. Components may have any number of
input signals but must have one, and only one, output.

A latch contains information conceming its present and next state. The latch's present
state is its output line and its next state ic s input line. A dock line is not included in the UC
Berkeley format. The two UC Berkeley lines to describe a latch are:

ps gl
ns yl

These lines define the latch as:

—0@P» Latch |—>P»
yl gl

Additionally, each latch’s initial state must be set. This is accomplished by the | line with boolean
logic Os (zeros) or 1s (ones). By setting the latch's initial state, the overali initial state of the
sequential circuit is also set.

The following short example utilizes each of pre_verif's various types. The example
represents a sequential circuit that cycles through four states issuing a "1’ output upon retum to its

initial state.

4.5

name Up_counter

#define inputs and outputs
i x1 x2

oz

#combinational logic
gl not x1 ; xlnot
g2 not x2 ; x2not
g3 not gl ; glnot
g4 not g2 ; gZ2not

g5 and xlnot x2 ql ; andS
g6 and x1 x2not gl ; andé
g7 and x1 x2not g2not ; and7
g8 or and5 and6é and7 ; yl

g9 and x1 g2 ; and9

gl0 and x2 g2 ; andl0

gll and xlnot x2 ql ; andll
gl2 or and9 andl0 andll ; y2
gl3 and xlnot x2not glnot q2 ; z
#first latch

ps qi

ns yl

#second latch

ps q2

ns y2

#initialization

I

00

Constructs within a VHDL structural design can be directly mapped to the input format
detailed above. These mappings are presented first, followed by a complete VHDL structural
model equivalent to the previous example sequential circuit expressed in UC Berkeley's format.

A VHDL entity description contains, at a minimum, the component's name and any input

and output ports. The pre_verif format of:
name Up_counter
#define inputs and outputs

i x1 x2
oz

4.6

can be represented in VHDL utilizing EIA's basicdefs package to define port types as:

use work.BASICDEFS.all;
entity Up_counter is

-- define inputs and outputs

port (x1 : in logic mv;
x2 : in logic_mv;
z : out logic mv;
q : inout logic_mv

):
end;

Further, component instantiations expressed as:

g4 not g2 ; g2not

can be represented in the VHDL structural model as:

g4 : inverter
port map{ g2, g2not);

In the case where a component has multiple inputs, the VHDL model allows signal concatenation

permitting generic multiple input devices to be used. An example in the UC Berkeley format is:

g5 and xlnot x2 gl ; andS

Where x1not, x2, and q1 are the input signals to the AND gate g5. Using a generic-width input

component as detailed in Chapter 3, this component instantiation can be expressed in VHDL as:

new_signal <= xlnot & x2 & ql;
g5 : ANDm
port map(new_signal, and5);

Latches may be represented several ways (J-K, T, D, etc). For this effort all latches are
represented as both synchronous or asynchronous D flip-flops. This clocking assumption is valid

in that the UC Berkeley input format assumes the same; however, a clock signal line is not present

4.7

in the UC Berkeley format but is required in the equivalent VHDL description. The clock line not
only fully specifies the synchronous sequential circuit, but also permits simulation using the VHDL
software support environment. Further, two additional signals offered in the VHDL D flip-flop
description are the SET and CLEAR lines. These lines allow a finer control of the VHDL
description than that offered in the UC Berkeley format. A latch described first in pre_verifs and

then in VHDL's format is:

ps q2
ns y2

FFl : d_ff
port map(y2, q2, CLOCK, SET, CLEAR);

Finally, circuit initialization expressed in UC Berekely format as:

can be expressed in VHDL in one of two ways:

Qinit <= "101001", "zZ22ZZ" after time_delay;
q0 <= Qinit (0);
ql <= Qinit(1);
g2 <= Qinit (2);
q3 <= Qinit (3);
g4 <= Qinit (4);
g5 <= Qinit (5);

or

with INITIALIZE select
Qinit <= *101001" when '1°,
*222222" when others;
q0 <= Qinit (0);
gl <= Qinit(1l);
q2 <= Qinit (2);
g3 <= Qinit (3);
q4 <= Qinit (4);
q5 <= Qinit (5);

4.8

In either case, the outputs of the flip-flops are set to an initial or reset value. The first example sets

the flip-flops to their initial state upon the start of simulation; the second sets the flip-flops

whenever the entity's INITIALIZE port is a logic 1’ value.
A complete VHDL translation of the sequential circuit described earlier in this section

utilizing UC Berkeley's format is then:

entity Up_counter is
~- define inputs and outputs

port (x1 : in logic_mv;
x2 : in logic_mv;
z : out logic_mv;
CLOCK : in logic_mv;
INITIALIZE : in logic_mv
);
end;

architecture STRUCTURAL of Up_counter is

component inverter
generic(propagation _delay : time := 0 ns);
port (
inl ! in logic_mv = 'U';
= 1t

outl : out logic_mv
)
end component;

for all : inverter use
entity WORK.inverter (REHAVIORAL) ;

component ANDm
generic{ propagation delay : time := 0 ns });
port (Inl in logic_vector _mv;
outl : out logic_mv := ‘U’

)
end component;

for all : ANDm use
entity WORK.ANDm(BEHAVIORAL) ;

component ORm
generic(propagation_delay : time := 0 ns);

port (Inl : in logic_vector_mv;

outl : out logic_mv := 'U’

)
end component;

for all : ORm use
entity WORK.ORm(BEHAVIORAL) ;

4.9

component AND2
generic(propagation_delay : time := 0 ns);
port (Inl, In2 : in logic_mv := 'U’;
outl : out logic mv := 'U’
):
end component;

for all : AND2 use
entity WORK.AND2 (BEHAVIORAL) ;

component OR2

generic(propagation delay : time := 0 ns);
port (Inl, In2 : in logic mv := 'U’;
outl : out logic mv := 'U’

)
end component;

for all : OR2 use
entity WORK.OR2 (BEHAVIORAL) ;

component D ff

generic (propagation_delay ! time := 0 ns);
port {(
D_in : in logic_mv = 'y
Q out : out logic_mv = 'U';
CLK : in logic_mv = fU';
Clear : in logic_mv = 'U';
SET : in logic mv = 'y

)

end component;

for all : d_ff use
entity WORK.D_ff(BEHAVIORAL);

signal new_signall : logic_mv = 'U';
signal new_signal2 : logic mv = 'U’;
sigr al new_signal3 : logic_mv = 'U';
signal new_signal4 : logic_mv = 'U’;
signal new_signal5 : logic_mv = '7J';
signal new_signal6 : logic mv = 'U';
signal new_signal7 : logic mv = 'U’;

signal RESET, CLEAR : logic_mv = 'U';

signal xlnot, x2not, glnot, g2not : logic_mv = 'U’;
signal and$5, and6, and7?,
and9, andl0, andll : logic_mv = 'U';
begin
RESET <= '0°';
CLEAR <= 'Q';
~- combinational logic
gl : inverter
port map(xl1, xlnot);
g2 : inverter
port map(x2, x2not);
g3 : inverter

port map(gl, glnot);

g4 : inverter
port map(g2, gq2not);

new signall <= xlnot & x2 & gl;
g5 : ANDm
port map(new_signall, and5);

new signal2 <= x1 & x2not & gl;
g6 : ANDm
port map(new_signal2, and6);

new signal3 <= x1 & x2not & g2not;
g7 : ANDm
port map(new_signal3, and7);

new signal4 <= and5 & and6 & and7 ;
g8 : ORm
port map(new_signal4, yl);

g9 : AND2
port map(x1, g2, and9);

gl0 : AND2
port map(x2, g2, andl0);

new_signalS <= xlnot & x2 & ql;
gll : ANDm
port map(new signal5, andll);

new_signalé <= and9 & andl0 & andl’:
gl2 : or
port map(new_signal€, y2 };

new_signal?7 <= xlnot & x2not & glnot & g2;
gl3 : ANDm
port map(new_signal7, z);

-- first latch
FF1 : d4d ff
port map(yl, gl, CLC~"¥X, SET, CLEAR);

-- second latch
FF2 : d_ff
port map(y2, g2, CLOCK, {LT, CLEAR);

-—- initialization
with INITIALIZE select
Qinit <= "Q00" when '1°',
"2Z" when others;
q0 <= Qinit (0);
gl <= Qinit (1);

end STRUCTURAL;

This VHDL description is completely simulatable in the VHDL software support
environment. As such, it contains more information than is required or specified by the UC
Berkeley format. This additional information is acceptable, however, because modifications to
pre_verif allow it to extract only that portion of the structural VHDL model required by the

verification software. These modifications are discussed in the next section.

4.2.2 Pre_verif Modifications

The modifications made to pre_verif allow it to take in a VHDL structural description
utilizing the relationships between VHDL and UC Berkeley's format as defined above. The VHDL
input file required by pre_verif must contain both the entity and architectural body as depicted in
the previous example. Pre_verif's output is directed 10 the file: verif.input.

All modifications made to the original pre_verif source are c-mmented as such. One
entirely new source file "vhdl_input.c” performs the VHDL translation. The new pre_verif software
may be acquired by contacting AFIT's Electrical and Computer Engineering Department.

Pre_verif is invoked from the unix prompt by:

pre_verif [options] [infile] [> outfile]
Two options are required to process VHDL files. First, “-enum” must be included to perform cover
enumeration of the input file; this option is required whether the input file is VHDL or UC Berkeley
format. In order to process VHDL structural files, the option "-vhd|® must also be induded. This
was included such that if *-vhdl® is omitted, pre_verit will expect a UC Berkeley formatted input file
rather than a VHDL file. The [> outfile] option redirects any output normally directed to the
console screen into a file. A typical invocation of pre_verif is then:

pre_verif -enum -vhdl cpu.vhd

4.12

4.2.3 Pre_verif VHDL Constraints

Because of the prootf ot concept nature of the pre_verif modifications, several constraints
have been imposed on the designer in utilizing the new VHDL option for pre_varif. Basically,
these constraints reduce the free-form nature of the VHDL text file and are detailed as follows.

Within the entity description, all input and output signals must be the EIA BASICDEFS
type of logic_mv. Additionally, only one signal is permitted per text line. The following VHDL

entity description is correct.

entity Up_counter is
-- define inputs and outputs

port (x1 : in logic_mv;
x2 : in logic_mv;
z : out logic mv;

CLOCK : in logic_mv;
INITIALIZE : in logic_mv
end; '
The following entities, afthough they represent correct VHDL, cannot be recognized by b2s. The
first places the ");" symbol, which signifies the end of a port list, on the same line as a port
declaration; the second declares the mode and type of multiple ports rather than one per line.
These errors are boldfaced for darity.

entity Up_counter is
~- define inputs and outputs

port (x1 : in logic_mv_vector(5 downto 0);
x2, x3 : in logic_mv;
z : out logic mv;

CLOCK : in logic_mv;
INITIALIZE : in logic_mv);

end;
c-..ly Up_counter is
-- define inputs and outputs
port(x1 : in logic_mv_vcctor(5 downto 0);
x2,
x3 : in logic_mv;
z : out logic_mv;

CLOCK : in logic_mv
)i

Further, two signals, CLOCK and INITIALIZE, are reserved entity port names. CLOCK signifies

the clocking signal used within the architecture for state-to-state transition and output
synchronization; INITIALIZE names that signal used to reset or initialize the sequential circuit.
CLOCK may be omitted; when missing an asynchronous sequential circuit is assumed.
INITIALIZE, however, may NOT be omitted; this signal is required to establish the reset or initial
state of the sequential circuit.

In the case of the architectural body, the VHDL modifications made by pre_verif ignore
the entirety of the architecture's declarative block. Although it must be present to ensure a
correct VHDL design, information contained within that portion of the design are not required by
pre_verif or verit. Additional architectural body constraints are as follows.

Instantiated components must be in the following format:

g5 : ANDm
port map (new_signal, andS);

The following component instantiation forms are incorrect. The first places the port map on the
same line as the component declaration; the second capitalizes the component's instantiated
identifier. Further, the reserved VHDL "port map™ must be lower case characters. The errors have

been boldfaced for clarity.

g5 : ANDm port map(new_signal, and5);

G5 : ANDm
PORT MAP(new_signal, and5):

Additionally, new signals declared within the architecture for use as inputs to the vectored input

components (ANDm, ORm, etc) must be concatenated before use. The following example is

correct:

4.14

new_signal <= gl & inputl & g3not;

g5 : ANDm
port map(new_signal, and5);

The following, although equivalent in VHDL to the previous example, is an incorrect input
format for pre_verif. All new signals which are comprised of concatenations of simple signals,

must be created (by concatenation) before they are used in the components.

g5 : ANDm
port map(new_signal, and5);

naw_signal <= ql & inputl & g3not;

In general, when a problem with VHDL translation occurs using pre_verif, "white spaces”
in the VHDL code should solve the problem. These white spaces may be blank spaces
separating words or symbols, or, they may be carriage returns breaking a line up into smaller parts.
One key enhancement to the pre_verit VHDL translator is the removal of alt VHDL formatting

constraints.

4.3 Behavloral Translation

This section details the behavioral to structural transiator (hereafter referred to as "b2s")
developed for this thesis. First, b2s's theory of operation is outlined foliowed by a description of
the subset of the behavioral VHDL model which b2s can translate and, where applicable, the

physical components which these represent.

4.3.1 The b2s Theory of Operation
As described in Chapter 2, one method of sequential circuit design is to capture the state
machine representation as a state transition table and derive combinational logic and flip-flops

from this state transition table. The b2s software operates in a similar manner. From a VHDL

4.15

behavioral model (currently limited to a Mealy machine as expressed in the behavioral model
format of Chapter 3), b2s generates a state transition table (STT) representing the inputs, present
state, next state, and outputs of the sequential circuit. From this table, a netlist of combinational
logic and D flip-flops is created and formatted in the structural VHDL format of Chapter 3. All
necessary architecturally internal signals and AND, OR, INVERTER, and D flip-flop components
are declared within the architecture’s declarative block. During the translation process, each and
every minterm within the state transition table is generated; no algorithms are included for
minimization of the combinational logic or optimization of the assigned binary state vectors.
Additionally, certain constraints are placed on the "free form" VHDL style that b2s can translate;

these constraints are enumerated in Section 4.3.3.

4.3.2 VHDL Behavioral to State Transition Table Mapping

This section describes the mapping of the VHDL behavioral model into the state transition
table used by b2s to generate structural VHDL. The VHDL behavioral model is currently limited to
a simple synchronous Mealy state machine; from the Mealy machine, a state transition table can be
constructed which contains inputs, present state, next state, and output information.

From the entity description, b2s extracts input and output information. As in the
pre_verifs VHDL structural input, CLOCK and INITIALIZE signals are reserved. The behavioral
model's architectural body contains a transition process which provides the skeletal state
transition graph of the machine, state blocks for each state of the machine, and additional optional
blocks (or processes) which provide for initialization and dock synchronization. The state
transition table is constructed from these portions of the architectural body in the following
manner. First, from the VHDL transition process, the present state, next state, and transition
columns of the state transition process are constructed. Each row of the state transition table
represents one transition within the state machine. Therefore, for each transition condition

encountered within the VHDL transition process, one row of the state transition table is

4.16

generated. The simple transition process of Section 3.3.1.1 is depicted in Figure 4.2 after the
transition process has been processed. Next, input and output signals which are associated with
each row of the state transition table are extracted from the individual state blocks which control
each individual state’s actions. Correspondence of the input and output signals to a particular row
of the state transition table is derived by matching the transition signal assignment within the state
block to the appropriate transition label of a row in the state transition table. This matching process
is repeated for each input-transition pair within a state block. Figure 4.3 depicts b2s's addition of

input and output information to a state transition table. This points out one key requirement ievied

on the behavioral VHDL description: within the architectural body, the fransition process must

precede the state blocks.

Inputs

Present Statdfransition

Next State

OQutputs

First State

goto second State

Second State

First State

goto Third State

Third State

First State

others

Second State

goto First state

First State

Second State

goto Third state

First State

Second State

others

Third State

goto First State

First State

Third State

goto Second State

Second State

Third State

others

Unknown State

goto First State

First State

Figure 4.2. State Transition Table after examining Transition Process.

Inputs (Present Statérransition Naxt State Qutputs
0100 First State goto second State {Second State 11
0010 First State goto Third State Third State 10
First State others
0001 Second State goto First state First State 01
1000 Second State goto Third state First State 10
Second State others
1111 Third State goto First State First State 01
1110 Third State goto Second State iSecond State (00
1100 Third State others
Unknown State Igoto First State ,first State

Figure 4.3. State Transition Table after Processing All State Blocks.

The translation performed by b2s from this state transition table into a state machine circuit
comprised of combinational logic and flip-flops is straightforward. Aithough not presented here,

the concepts of this process are readily available in (3) or (20).

4.3.3 VHDL Bebhavioral Constructs

The VHDL constructs which comprise the behavioral state machine model have been
described in Chapter 3. This section presents the subset of these constructs currently
recognized by b2s and details constraints imposed on their usage.

The current version of b2s translates a synchronous Mealy sequential circuit specified by
a behavioral VHDL design into a structural version. As outlined in Section 4.2.2, this translation
relies upon the transition process and the state blocks. The b2s software requires these VHDL
constructs in a particular format within the architectural body. Additionally, an intialization block or
process is required. Any clock process to permit synchronous state machine action is required for
VHDL simulation, but is currently ignored by the b2s software.

The transition process must preceed all of the state blocks within the architecture. This
process must take the form depicted in the following template (italicized words are user
dependent; non-italicized words are expected to be in their depicted place as spelled and
formatted):

process (transition)

begin

case Present State is
when First_State =>
case transition is
when transition2 =>
Next_ State <= Second_ State;
when transition3 =>
Next_State <= Third State;
when others =>
end case;
when Second_State =>
case transition is

when transgitionl =>
Next_ State <= First_ States;

4.18

when transition3 =>
Next State <= Third State;
when others => -
end case;
when Third State =>
case transition is
when transitionl =>
Next State <= First_ State;
when transition2 =>
Next_ State <= Second State;
when others =>
end case;
when others =>
end case;
end process;

State blocks contain the input and output information for the particular state. They must
take the form of the following template; again, italicized words are user defined. The signals
input_1, input_2, and input_3 are the entity's input ports as defined by the designer; the signals

out_1, out_2, and out_3 are the entity's output ports as defined by the designer.

FIRST BLOCK: block (Present_State = First State)
signal INPUTS : logic_mv_vector (2 downto 0);
begin
inputs <= input 1 & input 2 & input_3;

process (GUARD, inputs)
begin
if (GUARD) then

case inputs is
when "000% =>
out_1 <= '1';
transition <= goto_Second State;
when ®"111% =>
transition <= goto Third State;
out_2 <= '1’';
out_3 <= '1';
when others =>
end case;
else
transition <= Null;
out_1 <= null;
out_2 <= null;
out_3 <= null;
end if;
end process;
end block FIRST_BLOCK;

4.19

4.4 Software Validation

Both the b2s software and the software modifications made to pre_verif were tested to
ensure their correct operation. Most importantly, two key features were tested. First, the moditied
pre_verifs output file, generated from an input VHDL iile, was checked in order to determine that
it is equivalent to an output file generated by pre_verif from a UC Berkeley formatted file
representing the same sequential circuit. Secund, the structural VHDL design generated by b2s
was verified equivalent to the behavioral VHDL specification through VHDL simulations. These
tests were conducted on several different sequence detector designs. Each time the b2s and

modified pre_verif software functioned correctly.

4.20

5 Model and Verification Examples

This chapter presents several examples of not only the behavioral and structural VHDL
models proposed for sequentiai circuit modeling, but also presents several examples using the
verification software to show the equivalence (or non-equivalence) of several sequential circuits
expressed in VHDL. First, the behavioral model is demonstrated via the Test and Maintenance
(JTM) bus developed as part of the Joint integrated Avionics Working Group (JIAWG). Next, two
sequential circuits using the structural model are presented including the verification of both. The

first structural circuit is a sequence detector; the second is an eight-instruction CPU controller.

5.1 Behavioral Model
The following example exercises the capabilities of the behavioral model. its purpose is to
demonstrate various features of the behavioral model; as such, only portions of the examples can

be simulated within the VHDL software support environment.

5.1.1 Test and Maintenance Bus

The test and maintenance bus (tm-bus) is part of a common avionics architecture which is
to be used on the Air Force's Advanced Tactical Fighter (ATF), the Navy's A-12 Fleet Defense
Fighter, and the Army's LHX Attack Helicopter program. The tm-bus provides a maintenance

interface within the common avionics architecture (23).

5.1

5.1.2 Description

The tm-bus is a serial bus which transmits diagnostic control and status information
between the modules interconnected via the tm-bus (23). Figure E.1 within Appendix E details
the state transition graph representing the possibie tm-bus states during information fiow on the
bus.

The tm-bus state diagram can be represented using the behavioral model's transition
process. By providing the VHDL code as an adjunct to or a replacement of the English text
specification, the tm-bus can be simulated by the contractor in order to ascertain the bus's
operation. Further, portions of the VHDL code can be extracted for use in testing the tm-bus
module's interface to the bus. This code is provided in Appendix E. As described in Chapter 3,
this modeiing method is superior to a siandalone English text specification in that the English
document can be open to interpretation; the VHDL cannot.

The behavioral VHDL sequential circuit model can also describe the modules which
interface with the tm-bus. Within the tm-bus specification document, the functional description
requires five pages: four for English text, one for a state diagram. As shown in Appendix E, the
VHDL behavioral mode _ 1n represent the same basic information in two pages.

Additional portions of a tm-bus module were described using the behavioral VHDL model.
This modeling effort, performed for the tm-bus ccmmittee of the JIAWG, is described in Appendix
E. Simulation testing was not attempted on these module portions as the details of the
specification document which they represent were still being defined by the JIAWG tm-bus
committee. Regardless, these behavioral code portions demonstrate the capabilities of the

behavioral sequential circuit model in specifying a tm-bus module.

5.1.3 Skeletal Design

The behavioral VHDL model was used to create a skeletal specification of a tm-bus

module. The skeletal specification consists of that information necessary to reconstruct tho state

5.2

transition diagram of Appendix E; this includes the states and transitions within the state transition
diagram. The specification is simulatable; but it does not implement the full functionality of a tm-
bus module as detailed in the tm-bus specification document. A behavioral VHDL model
specification of that detail was not only beyond the scope of this research effort but also
prevented by ongoing revisions of the tm-bus specification document by the JIAWG tm-b':s
committee. Appendix E contains the skeletal specification of the tm-bus module. Additional
portions of the tm-bus module were implemented using the behavioral VHDL sequential circuit
model in order to demonstrate the model's capabilities; the tm-bus module contains multiple
concurrent processes within each state along with state machines nested within states.
Incorporating multiple concurrent processes and nested state machines were of prime interest to
the tm-bus committee.

The behavioral model readily accommodates concurrent processes within states. Each
state is represented as a VHDL block construct. Within its statement part, the block construct
permits multiple VHDL process constructs (16). As an example, the tm-module’s startup timer
state requires three concumrent processes (23). The first process performs built-in module tests
(named Sbit). A second process counts a specified number of clock pulses and then forces entry
into the tm-bus module’s first survivor state if Sbit is complete. Finally, a third process listens for
information flow on the tm-bus. if an RMT command is received over the tm-bus, the third process
interrupts the startup-timer and forces entry into the tm-bus module’s slave state. Appendix E
presents a VHDL specification of this state.

Finally, within one of the tm-bus module's state is another state machine. Although
generalized here, a tm-bus specific nestad state machine is presented in Appendix E. A state

machine within another state can be represented by Figure 5.1.

5.3

OUT_OF

INITIAL STATE

Cycle

Retard . Advance

Big_State

Figure 5.1. Nested State Machine.

A transition is made into "Big_State™ when the transition condition INTO is assigned to the
transition signal. When the transition occurs, the nested state machine is initialized to S1 and
processing continues. A transition out of the "Big_State" is made when the transition condition
"OUT_OF" is met and assigned to the transition signal. The behavioral VHDL model code to
support this nested state implementation is as follows. The implementation assumes that the
nested state’s transition signal has its own resolution function and enumerated names of Retard,

Cycle, and Advance.

Big State_ Block: block (Present_State = Big State)
signal BS_Present_State : BS States := Unknown_ BS State;
signal BS_Transition : BS_Transition_Resolution
BS_Transitions bus
:= no_BS_Transition;

signal Leave_ BS_State : boolean := false;
begin
process
if GUARD then -~ This process initializes the nested machine

-~ and determines when to leave the Big_State.
BS_Present_State <= S1;
wait until (Leave BS_State = TRUE);

54

BS_Present_State <= Unknown_BS_State;
Transition <= QOUT OF; -
else -
Transition <= null;
end if;
end process;

process (BS transition) begin
case BS Present_State is
when S1 =>
case BS Transition is
when Cycle => BS_Present_State <= Sl1;
when Advance => BS Present_State <= 52;
when others => B
end case;
when S2 =>
case BS_Transition is
when Retard => BS_Present_State <= S51;
when others =>
end case;
when others =>
end case;
end process;

S1_State: block (BS_Present_State = S1)
begin
process
if GUARD then
Do_some_action;
BS_Transition <= Advance;
else
BS_Transition <= null;
end if;
end process;
end block S1_State;

BS_S52_ State: block (BS_Present State = 52)
begin
process
if GUARD then
Do_some_action;
if Condition_1 then
BS_Transition <= goto_ Xfer;
else if Conditon_2 then
BS_Transition <= goto_Listen;
else if Condition_3 then
Leave_BS_State <= TRUE;
end if;
else
BS_Transition <= null;
end if;
end process;
end block BS_S2_ State;

end block SLAVE STATE;

5.5

In this code segment, the first process within the architectural block simply initializes the
state machine and then waits until the Big_State's exit transition condition is met. Once met, it
makes the assignment to the transition signal to fire the transition process exiting Big_State. The
next process is the nested state machine's transition process. lIts is identical in function to the
transition process for a simple behavioral sequential circuit; it performs the state to state transitions
within the nested state machine. The next two blocks represent the individual states of the
nested state machine. As such, they perform the nested machine’s actions and
as in the second block's case) set the exit flag, Leave_BS_State, signifying a transition must be

made out of the Big_State.

5.2 Structural Model Examples

Two sequential circuits were implemented using the structural VHDL model of Chapter 3.
The first sequential circuit implemented a sequence detector; the second implemented an eight-
instruction CPU controller. The sequence detector was implemented three different ways; the
CPU controller two. The intent of these examples was to not only demonstrate the abilities of the
structural model, but also, to demonstrate the correct functionality of the verification software
environment for both two equivalent and two non-equivalent sequential circuits. The following

sections detail the resuits of these two structural modeling efforts.

5.2.1 Sequence Detector
The sequence detectnr structural VHDL examples were created to demonstrate the
capabilities of the structural model and the ability of the verification software environment to show

the equivalence of three separate sequence detector designs.

5.6

5.2.1.1 Description

The sequence detector was implemented as a single input, single output sequential
circuit which detects the binary input string of "1001." The sequential circuit issues a '1’ output
whenaver the string "1001" is detected. Figure 5.2 depicts the state transition graph for a Mealy

machine implementing this function.

0/0 1/0

Starting 1/0 Detected

State 1

0/0
0/0
in 1/0

Detected Detected
Second 0 oo (V]

Figure 5.2. Sequence Detector.

5.2.1.2 Designs
The sequence detector was constructed using the structural VHDL model three different

ways. First, using the state and state vector assignments of

State Yector
Starting State 00
Detected 1 01
Detected 0 11
Detected Second 0 10

Two versions, one using AND-OR and another using NAND devices within the combinational

logic, were constructed. Then, using an altemate state vector assignment of

5.7

State Vector

Starting State 01
Detected 1 00
Detected O 10
Detected Second 0 11

an altemate AND-OR version was constructed. Appendix F contains the structural VHDL code of

these three versions.

5.2.2 Eight-Instruction CPU Controller
The eight-instruction CPU controller structural example was created to demonstrate the
capabilities of the structural model and the ability of the verification software environment to

disprove the equivalence of two non-equivalent circuit designs.

5.2.2.1 Description

Functionally, the eight instruction CPU controller is the same controller which was
described using the behavioral VHDL model as detailed in Section 3.3.2.1. Unlike the behavioral
implementation, the structural version contains sixteen states. The three additional states were

required by each read or write to extemal memory.

5.2.2.2 Designs

The controller was implemented twice using the structural VHDL model -- one comrect and
one incorrect implementation. The incorrect implementation improperly decodes the JUMPZ
instruction. For proper operation, the JUMPZ instruction checks the value of the accumulator. If
the accumulator is zero, the JUMPZ instruction is performed; if the accumuiator is not zero, the
controller does not perform the JUMPZ instruction but fetches the next instruction for the CPU
controller to decode. The error introduced in the second design forced the controller to always

perform the JUMPZ instruction regardless of the accumulator's value. This error was introduced

5.8

by removing one transition from the controller's state transition graph. The bold arrow in Figure
5.3 points to the transition which was removed from the state transition graph. Appendix F
contains the structural VHDL code for the correct CPU controller. Also, in Appendix F, is that
portion of the improperly implemented controller's code which incorrectly decodes the JUMPZ

instruction. This erroneous code replaces the JUMPZ decoding of the correct controller.

AC < AC ANDDR

Figure 5.3. Eight Instruction CPU Controlier Error Location.

5.3 Equivalence Verification
Equivalence verification was performed between the structural designs of Sec*.cin 5.2.
and between a behavioral and a structural sequence detector. This section details ihe results of

these verification tests.

5.9

5.3.1 Structure to Structure Verification
The structure to structure verification was performed between the various sequence
detector designs of Section 5.2.1 and between the two eight-instruction CPU controllers of

Section 5.2.2. The resuits are presented here in that order.

5.3.1.1 Sequence Detectors

The equivalence of the three versions of the sequence detector was demonstrated in
two ways. First, exhaustive simulation of the three sequential circuits was performed using the
VHDL software support environment's simulator. The three sequence detectors were tested
together on the same test bench. Appendix F contains the test bench and simutation report for
one test of the sequence detectors. From these tests, the three sequence detectors were
shown to be equivalent. Then, using the pre_verif and verif software, the three sequence
detectors were again shown equivalent. As an additional test, this time intended to prove the
veracity of the pre_verif VHDL translation routines, each sequence detector was duplicated using
the UC Berkeley netlist format. Each VHDL version of the sequence detector was then verified
against its equivalent UC Berkeley version. Each verification test ran successfully. See Appendix

F for the UC Berkeley netlist versions of the sequence detector.

5.3.1.2 CPU Controllers

Like the sequence detector, the CPU controller was tested using both the VHDL
software support environment’s simulator and the verification software. Appendix F contains a
sample simulation run which shows the correct operation of the corect CPU controiler and the
improper operation of the incorrect implementation. As in the sequence detector case, both CPU
controllers were simulated on the same VHDL test bench.

The results of this example are quite promising in regards to the superiority of verification

methods over exhaustive simulation. For comparison methods, both the VHDL simulation and

5.10

the verification processes began with the VHDL source code of the CPU controlier. In simulation,
both the correct and incorrect VHDL structural controllers were analyzed, model-generated, built,
and simulated concurrently on the same test bench. A report file was generated which contained
clocking, input, and output signal information. In verification, both the correct and incorrect VHDL
structural controllers were translated via pre_verif and then verified via verif. Appendix F contains
both the unix script files and results for the VHDL and verification runs. As can be seen from the
runs, the VHDL simulation required approximately 30 minutes through report generation --
without any indication that the two controllers were not equivalent. The generated report file had
yet to be scanned to determine equivalence. The verification process, on the other hand,
terminated in approximately nine seconds and accurately reported that the two controllers were
not equivalent. Additionally, once verif reported that the two controllers were not equivalent, it
produced a set of input vectors which, when applied to each controller's state transition graph,

correctly identify the incomrect state and state transition.

5.3.2 Behavior to Structure Verification

The behavior to structure verification was performed on the two-input, two-output,
synchronous, sequential circuit of Figure 5.4. First, a behavioral description was created from the
state transition diagram. Next, a structural description was created from Kamough maps of the
circuit. Then, using the verification software, the two circuits were verified equivalent. Included in
Appendix D is this verification example as an exercise. The VHDL behavioral and structural
descriptions including the structural description created by the b2s software are included with

Appendix D's exampie for completeness.

X2 X1/ out 2 out 1

Ny

Figure 5.4. Two-input, Two-output, Synchronous Sequential Circuit.

The verification software verified tt.at the two circuits were indeed equivalent. The

software terminated with the results:

Machine 1 inputs 2 outputs 2 latches 2

Machine 2 inputs 2 outputs 2 latches 2
#Time to read in covers : 1.300000e-01 secs
#MACHINES ARE THE SAME

Number of states = 4

Number of edges = 15

Number of entries = 7

Number of save difs = 0

#Time for verification : 7.000000e-02 secs
#Total user time : 2.000000e-01 secs

512

6 Conclusions, Recommendations, and Summary

6.1 Concluslions

This section presents conclusions reached by the researcher concerning the sequential
circuit models (behavioral and structural) and the integrated VHDL/verification process. First, the
conclusions of several model examples are presented followed by the results of the verification

process.

6.1.1 Models
As presented in Chapters 3 and 5, multiple sequential circuit examples were created
using the behavioral and structural models. This section presents the results of both. The

behavioral model is presented first followed by the structural.

6.1.1.1 The Behavioral Model

Muitiple sequential circuit examples were developed to prove the abilities of the
behavioral VHDL model. Examples presented in this thesis included a synchronous Mealy, an
asynchronous Moore (both in Appendices B and F), a hybrid sequential circuit incorporating
multiple processes per state (Appendix B), and a hierarchical circuit containing nested state
machines within states (Appendix E). In each case, the resuiting circuit description exhibited
specification advantages over previous efforts. Each simulated the cormrect behavior of the
desired circuit and were more easily readable than designs expressed in the earlier specification
styles presented in Chapter 2. In fact, the behavioral model was so well received, that it is
currently being used by the DoD Joint Integrated Avionics Working Group's (JIAWG) test and
maintenance bus (tm-bus) subcommittee to develop a VHDL specification of the tm-bus for the

Air Force's and the Navy’'s ATF, and Ammy's LHX. When completed, this VHDL tm-bus

6.1

specification, which fully specifies and simulates the desired operation of the deliverable product,
can replace the English-text portion of the contractual document to be delivered to the

contractors.

6.1.1.2 The Structural Model

As presented in Chapters 3 and 5, the structural model was tested several ways. Three
versions of a sequence detector and two versions of an eight-instruction CPU controller were
developed (Appendices C and E). They were used not only to test the modeling ability of the
structural model buit also to exercise the verification software. From these, it was determined that
the model is not unlike structural descriptions expressed in other design languages which contain
a netlist of components and can be simulated in order to test the circuit's operation. From these
examples, the structural model is shown adequate for designing sequential circuits using a limited
set of standard components; but is hindered in expressiveness by this restricted set of
components. As detailed in Chapter 3, these components were intentionally selected in order for
the structural model to facilitate the proof of concept merger of the VHDL modeis to the UC

Berkeley verification software.

6.1.2 Verification

The conclusions presented here are based on two structural-to-structural verifications
and one behavioral-to-structural verification as discussed in Chapter 5. All three versions of a
sequence detector were verified equivalent to each other via VHDL simulation and the verification
software. Additionally, the verification software accurately identified the two eight-instruction CPU
controllers as non-equivalent. For this latter case, the verification software also provided a set of
input vectors which distinguished the different performance of the two controllers. Finally, the
verification software accurately verified two sequence detectors; one described via the behavioral

model and another via the structural model.

6.2

In both the structure-to-structure cases, the verification process accurately predicted the
circuit's equivalence (or non-equivalence) in considerably less time than a VHDL simulation of tha
same components. As a case in point, the eight-instruction CPU controller required 29 minutes to
perform VHDL analysis, model generation, and simulation; the verification software required less
than 2 minutes. It's important to note that the 29 minutes required for VHDL simulation only
produced a simulation report -- it did not include the time required to compare the simulation
results in order to determine if the two controllers were equivalent or not. In less than 2 minutes,
the verification process not only identified the two controllers as non-equivalent but also provided
a set of input vectors, which, when applied to the CPU controllers during VHDL simulation,
correctly delineated the ditferent functionality of the two controllers.

For the behavior-to-structure case, the verification software was faster than the VHDL
simulation again. More importantly, however, it demonstrates that behavioral circuit specifications
can be merged into the verification process. This test aptly provided the proof of concept in the
VHDL and verification methodology merger. Although this process currently accepts behavioral
models which describe only synchronous Mealy sequential circuits -- its success demonstrates
that structural design validation from a behavioral specification is possible. It warrants further

research to exploit all the capabilities of VHDL and the verification software.

6.2 Recommendations

This section presents several recommendations for enhancements to or future research
in the sequential circuit specification, design, and verification environment developed by this
thesis. These recommendations fall into three categories: extending the VHDL language
constructs permitted within both the behavioral and structural models, expanding the capabilities
of the verification software, and, most importantly, incorporating timing paramaters into both the
behavioral and structural sequential circuit models and into the verification process. Each of these

topics are discussed in the following sections.

6.3

6.2.1 VHDL Model Enhancements.

Enhancements should be made to both the behavioral and structural models proposed in
this thesis in order to increase the models’ fluency in circuit specification and design. As
presented in Chapter 3, the models developed in this research currently use a limited set of the
VHDL language constructs -- more research is necessary to incorporate additional language
constructs in order to permit a more fluent specification and design capability yet maintain the
models’ clarity. Proposed enhancements and the research necessary to make these

enhancements are presented first for the behavioral model and then for the structural.

6.2.1.1 Behaviora! Model Enhancements.

For the behavioral model, research should focus on incorporating more VHDL constructs
and timing information. Although it is quite easy to blatantly add more constructs to those
permitted within the behavioral model, the research should determine which constructs not only
correctly specify the behavior of the sequential circuit but also, in their usage, do not imply one
particular hardware implementation. As an example, the following behaviorally-correct VHDL code
portion, which counts two negative falling clock edges before taking some action, may imply that

the designer use an up counter circuit when the actual circuit is implemented.

process (Clock)

variable clock_count : integer := {;

begin

if negedge(clock) then
clock_count := clock_count + 1;
if clock_count = 2 then
-- some action is performed such as:
outputs <= "(0001";
end if;

end if;

end process;

6.4

in place of this process, a simple VHDL wait statement, which does not imply counting up or down,
may be superior in that it does not dictate a counter's particular implementation. A simpie counter
could then be:

wait for 2 * Clock_period;
Further research is required to specify starting, stopping, and programming counters specified as
wait statements.

Timing information could be entered in several locations within the behavioral model --
future work should investigate if timing information should be entered at will or entered in specific
locations within the behavioral model. As an example, the delay time which can be associated with
state-to-state transitions can be specified in two places within the behavioral model. One location
is inside the state block where the transition signal is assigned one of the enumerated values
indicating a transition is to take place. Within the state block, a state-to-state transition delay time
of 10 nanoseconds could be expressed as:

Transition <= goto_First_State after 10ns;
Altematively, within a second location (the transition process where the next state is evaluated
based upon the value of the Transition signal), the design could specify:

Next State <= First_State after 10ns;

While either method results in the correct specification and simulation of a 10 nanosecond
transition delay, research is warranted to determine if one method more clearly or succinctly
specifies the sequential circuit. Further work here, and in other VHDL constructs, is required.
The issue of incorporating this timing information into the verification process is discussed in
Section 6.3.3.

Moving up a level of abstraction within the behavioral VHDL specification, the block
construct has been shown appropriate for modeling ind* idual states. Future research should

investigate replacing the state block or processes within the state block with a VHDL concurrent

6.5

procedure call. For example, the fcllowing state, which currently is contained in its entirety in the

behavioral modeil:

First State : block (Present_State = State_1)
begin
process (GUARD , X1, X2)
if GUARD then
-—- Location of State activities if state is active.
else
-- etc...
end if;
end process;
end block First State;

would be replaced by:

First_ State: First_State Procedure(Present_State, X1, X2, Out_1);

where Present_state, X2, X2, and out_ 1 would be signals passed in and out of the
procedure. The concurrent procedure call would be quite appropriate in large designs in that the
procedures’ contents would be located in separate VHDL packages which the architectural body
references via the VHDL use construct. Additional research should not only investigate including
concurrent procedure calls into the behavioral model but also, once incorporated, the research
should extend the verification method to include the procedure calls. This would necessitate that
the b2s software contain additional routines which search the designer's libraries and extract the
appropriate concurrent procedure body information in order to generate the state transition table.
Finally, from a global system design perspective, the behavioral VHDL model is intended
solely for specifying sequential circuits. There is no reason why a more omniscient behavioral
model, such as that depicted in Figure 6.1, could not be developed in which the sequential

VHDL model would be a component. Although this would preclude the use of the verification

6.6

methods developed by this research, future research should be directed towards developing this

overall system model and applying verification methods to it.

—t Component_1

Behavioral
— Component_2 Sequential
Circuit

- Compbnent_3

v

Figure 6.1. Behavioral VHDL Sequential Circuit within a System.

6.2.1.2 Structural Model Enhancements.

The structural model proposed by this thesis uses a small portion of the available
language constructs in the VHDL, namely component instantiation, scalar and vector signals
within the architectural body, and two initialization methods. Unlike the proposed behavioral
enhancements which seek to increase the language constructs available to a designer, future
enhancements 1o the structural model should focus on

(1) adding the "generate" language construct for instantiating arrays of regular

components within the sequential circuit (ideal for multiple flip-flop instantiation),

(2) incorporating a larger component selection within the design (such as PALs, PLAs,

ROME, custom components, etc),
(3) refining methods for initializing the sequential circuit, and,

(4) including inter- and intra-component delay timing information.

6.7

Each of these additions would increase the structural model's fluency and capability in describing
the sequential circuit as an interconnection of electronic components. Additionally, any
enhancements to the structural model would require modifications to the pre_verif VHDL
translator code in order to allow pre_verif to accept the enhanced structural VHDL design.
Finally, as in the behavioral model's case, there is no reason why a more omniscient
structural model, similar in concept to the behavioral one depicted in Figure 6.1, could not be
developed in which the structural sequential VHDL model would be a component. in Figure 6.1,
the structural sequential VHDL model would replace the behaviorai model. Although this would
preclude the use of the verification methods developed by this research, future research should

be directed towards developing this overall system model and applying verification methods to it.

6.2.2 Verification Software Enhancements

Enhancements should be made to both the pre_verif and b2s software tools.
Enhancements to pre_verif should center on its ability to translate the structural VHDL model;
enhancements to b2s should involve both its behavioral VHDL model translation capability and its
output file formats. Thbse modifications to pre_verif and b2s are discussed in the following
sections. An additional enhancement common to both tools would be adding an ability to
transiate timing information which has been incorporated into the VHDL models; this modification

is discussed in Section 6.3.3.

6.2.2.1 Enhancements to pre_verif

Enhancements to the pre_verif software should center on removing the current
constraints on the format of the VHDL constructs which pre_verif recognizes. These constraints,
as presented in Chapter 4, range from the simple lower-case character recognition of symbols

such as "port map” or "entity” to enforced two line construct formatting of

6.8

g4 : ANDm
port map (input_signals, output_signal);

rather than

g4 : ANDm port map (input_signals, output_signal);
Additionally, pre_verif should be extended in order to translate any enhancements incorporated
into the structural VHDL model as proposed in Section 6.3.1.2. These modifications to pre_verif

would greatly enhance the tools ease of use.

6.2.2.2 Extensions to b2s.

The b2s extensions proposed for future research involve three different areas. First, b2s
should be extended to translate the additional VHDL constructs incorporated into the behavioral
VHDL model as suggested in Section 6.3.1. Next, the structural VHDL synthesized by b2s
should be optimized; this enhancement is discussed in Section 6.3.2.2.1. Finally, atemate b2s
netlist cutput formats should be investigated; two are proposed in Section 6.3.2.2.2. This work to
enhance b2s would greatly aid AFIT's VLSI design capabilities in allowing direct circuit synthesis

from a behavioral VHDL description.

6.3.2.2.1 Structural VHDL Optimization.

In its current version, the b2s software produces combinational logic for the structural
VHDL model which is not optimized from the behavioral circuit's VHDL specification. Each
minterm within the sum of products equations, which are realized by the combinational logic, is
explicitly enumerated. Further, b2s forms these minterms, whether or not they are required (ie, a
don't care situation), from every signal within the state's input and present state vector(s). Finally,
during the generation of the state transition table from the behavioral VHDL description, no state
vector assignment optimization is performed. Future enhancements to b2s should incorporate

some method to optimize the combinational logic.

6.9

The optimization could be accomplished in several ways. First, the minterms could be
minimized. Minimization would reduce the number of variables required within minterms and, in
tum, reduce the complexity of the combinational logic. Additionally, minterms which are common
between any of the output(s) and/or next state(s) signals should be instantiated as one AND gate
rather than the current method of instantiating an AND gate for each usage of the same minterm
within the multiple sum of product equations. Finally, a method for optimizing state vector
assignments should be investigated in order to minimize the combinational logic through

judicious state vector assignment.

6.3.2.2.2 Alternate b2s OQutput Formats.

Altemnative b2s output formats should be investigated in order to explore structural
design synthesis from the behavioral VHDL specification. One altemative b2s output could be a
SPICE-based structural netlist. As mentioned above, another output format could be a MAGIC, or
CIF based, macro-cell chip layout synthesized directly from the behavioral VHDL model. Each
altemative output format would provide a logical "next step” in the design process originating from
the behavioral VHDL model.

The SPICE-based netlist would provide the capability of performing an in depth analog-
based timing, fanout, and power consumption analysis of the sequential circuit. This analysis is
currently not available in VHDL. Resuits from the SPICE simulations could then be back
annotated into the behavioral or structural VHDL sequential circuit descriptions in order to
produce a quite complete VHDL specification or design of the desired sequential circuit.

The MAGIC or CIF based macro-cell netlist would provide the capability of synthesizing
the sequential circuit on a MOSIS chip directly from the VHDL behavioral description. Automating
this synthesis step would eliminate any MAGIC design errors which are inadvertently introduced

during the manual layout step currently performed at AFIT. Additionally, automating this process

6.10

would eliminate the time consuming manual layout step and permit more time for the design and
testing of the sequential circuit's behavior.

The generation of either alternate output format is not a simple matter. In the case of the
SPICE-based output, research would be necessary in order to properly characterize the SPICE
structures of the current VHDL structural components (AND, OR, NOR, NAND, flip-fiops, etc).
Although the structural components could be represented in SPICE as subcircuits, base line
performances and sizes including a mechanism for dealing with 2, 3, 4, or more input signals
should be developed. Further, some methodology must be derived in order to back annotate
information gleaned from the analog simulations into the behavioral (or structural) VHDL
descriptions. Key to the back annotation would be deriving a method to incorporate inter-
component delays introduced by resistive and capacitive affects of wire routing on the VLSI
layout.

For the MAGIC or CIF based representations, automated cell placement and routing may
be an intractable issue. Research is required in these areas. Additionally, this representation
shares with the SPICE format the need to represent the structural components as macro-cells.
Also, as with the SPICE version, AFIT lacks a macro-cell library of MAGIC components; each chip

layout is a fully custom, hand-crafted design.

6.2.3 Incorporating Timing into the Verification Process.

Currently, the verification process used in this thesis does not incorporate any notion of
timing delays brought about by signal propagation delays intemnal to or propagation delays
between devices within the sequential circuit. VHDL possesses language constructs for
introducing timing delays into both the behavioral or structural VHDL models; their inclusion in the
behavioral and structural models is discussed in Section 6.3.1.1 and Section 6.3.1.2. Using
these constructs, both the behavioral and structural VHDL sequential circuit models can

accurately portray the timing characteristics of an actual circuit. Given their inclusion within the

VHDL models, this section presents one possible method for verifying not only the functional but
also the timing equivalence of two sequential circuits which incorporate the timing delay
constructs of VHDL.

First, a concise definition of "timing equivalence” should be derived. Two circuits may be
logically equivalent producing the same output(s) for any given input(s) and present state
condition, but the output(s) may be valid at vastly different times. The first circuit may produce a
valid output after 10 nanoseconds while the second may produce the same output after 2 days.
Functionally, these two outputs are equivalent; but the two circuits are hardly interchangeably
equivalent. When the sequential circuit is synchronous, the "timing equivalence” definition may
involve the output delay times when measured from the appropriate edge (or level) of the
synchronizing clock. The asynchronous circuit may involve a combination of the timing delays for
the output(s) and any time delays required to transition from state to state. Finally, the "timing
equivalence” definition may affect the manner in which a check for timing equivalence is
incorporated and/or performed in the verification software.

One possible approach is presented as follows. Figure 6.2 shows a representative state
transition table for a Mealy machine which incorporates propagation delay time. In the figure, T1
represents the transition delay time required to transition from the present state into the next state
as measured from the time when the inputs and present state are valid. T2 represents delay time
required before the output is valid as measured from the time when the inputs and present state
necessary 1o determine the output are present. This state transition table can be readily

constructed from either the behavioral or structural VHDL models of a sequential circuit.

6.12

State Transition Table:

| loputs | PresentState | NedState | T1 ! Quipuls | T2
0 - 000 1-1 ins 110 3ns
1- 1-1 01- 2ns 100 2ns
0 - 01- 100 ins 000 4ns
- - 100 100 4ns 110 5ns
i- 100 100 5ns 000 2ns
1- 110 100 ins 100 ins
00 100 100 3ns 001 2ns
-1 100 111 ins 111 a2ns
00 1-1 01- ins 100 2ns
1- 000 100 ins 001 2ns

Figure 6.2. Sample State Transition Table Incorporating Timing Information.

The manner in which the timing information represented by T1 and T2 is incorporated into
the two VHDL models should receive close attention. For the behavioral model, these delay
times may be introduced in several portions of the design, as represented in Figure 6.3. Whether
the model portrays a synchronous or asynchronous circuit may further determine the appropriate
method of inserting this timing information into the behavioral model. Additionally, for the
structural model, a mechanism for determining the lumped sum propagation delay time and wiring

delay time between components, as depicted in Figure 6.4, must be derived. The VHDL

structural model does not include the architectural bodies of the components which are

instantiated within the structural model. This would necessitate that the pre_verit software contain

additional routines which search the designer's component libraries and extract the appropriate

component timing information.

6.13

transition At

output At

Figure 6.3. Delay Time Insertion into the Behavioral Mode!.

Clock

Figure 6.4. Lumped Sum Propagation Delay.

For the purposes of this example, "timing equivalence” will be defined such that each
signal (both output and next state) must be identical between the two circuits under
consideration. In reality, this may be too stringent a requirement; plus and minus time tolerance
ranges about some desired valid output time may be more appropriate. Figure 6.5 depicts this

tolerance range as a greyed region about two signals of interest.

6.14

Logic 1 —

Logic 0—

Logic 1 —

Logic 0—

Circuit 1

Circuit 2

¥

>

time

Figure 6.5. Equivalent Output Signals within a Tolerance Region.

One possible solution for the verification software may proceed as follows. As the

verification software steps through each state pair of the two sequential circuits searching for a

differentiating sequence to determine their equivalence or non-equivalence (as detailed in

Chapter 2), the delay times for the particular output or state transition of the two machines can be

compared. If these times are equivalent or within some acceptable time tolerance, the machines

are considered identical and verification can proceed for the next state pair. if these times are

different, the machines are different and verification may terminate.

6.3 Summary

This thesis has presented a solution to the problem of specifying, designing, and

verifying sequential circuits. The solution is a merger of the specification and design capabilities

of the VHDL with a known verification method in order to solve the design and verification problem

of sequential circuits. Both goals of the research were met. The first goal was to determine

appropriate VHDL language constructs for behavioral and structural modeling of a sequential

circuit. This goal produced two VHDL-based models: one for behavioral specification and a

another for structural design. The second goal was to apply the verification techniques of UC

Berkeley's verif software to sequential circuits portrayed via the behavioral and structural VHDL

6.15

models. The product is a set of software tools, b2s, pre_verif, and verif, which compare two
sequential circuits described via the VHDL models. These models and software tools have been
tested and have been shown to be quite appropriate for solving the specification, design, and
verification problem of sequential circuits. Finally, recommendations have been offered for

improving both the VHDL models and the verification software.

6.16

APPENDIX A. EIA COMMERCIAL COMPONENT MODEL
SPECIFICATION SP-2229

This appendix contains the seven level logic definitions and ancillary support functions as proposed
for standardization by the Electronic Industry Association. For further information regarding this

proposed standard and its use, consult the EIA specification document, SP-2229.

YHDL Source Code Page
basicdefs package A.2
basicdefs package body A.5

Al

package BASICDEFS is

The following is a preliminary definition of the basic logic system
and associated operators/functio.s used for the EIA VHDL Model
Commercial Component Specification.

Created by Dave Cantwell/Hughes (714)-670-4677
& Len Finegold/General Dynamics

-- COPYRIGHT C Hughes Aircraft Co. 1988
-- Created 1/25/90
~- Version 0.1
Type logic_mv is ('U', 'x', '0', '1', '2', 'L', 'H');

Type logic_vector _mv is array (natural range <>) of logic_mv;
Type logic mv_table is array (logic_mv, logic mv) of logic_mv;

Logic conversion functions

OVERLOADED OPERATORS

FUNCTION “and" (11, i2 logic_mv) RETURN logic mv ;
FUNCTION "nand" (i1, 12 : logic mv) RETURN logic _mv ;
FUNCTION "or" (i1, i2 : logic mv) RETURN logic mv ;
FUNCTION "nor"™ (i1, i2 : logic_mv) RETURN logic_mv ;
FUNCTION "xor" (i1, i2 : logic_mv) RETURN logic mv ;
FUNCTION "not™"™ (il : logic_mv) RETURN logic mv ;
—-—- NOT A PREDEFINED OPERATOR, TRHUS 15 NOT OVERLOADED.

FUNCTION xnor (11, i2 logic mv) RETURN logic _mv ;

A ——— . — " ———— s S — T - — ————— —————— " ———————

s - ————— - —————————— " = — ————— > — = - ———— " " ot e = —————— " — ————— - — ———

FUNCTION "and" (i1, i2 : logic_vector_mv) RETURN logic_vector mv ;
FUNCTION "nand" (i1, i2 logic_vector mv) RETURN logic_vector mv ;
FUNCTION "or"™ (i1, i2 : logic_vector_mv) RETURN logic_vector mv ;
FUNCTION "nor" (11, i2 logic_vector mv) RETURN logic_vector mv ;
FUNCTION "xor" (i1, i2 : logic_vector mv) RETURN logic_vector mv ;
FUNCTION "not" (i1 : logic_vector mv) RETURN logic_vector mv ;
-= NOT A PREDEFINED OPERATOR, THUS IS NOT OVERLOADED.

FUNCTION xnor { 41, i2 : logic_vector mv) RETURN logic_vector mv ;

BIT-WISE REDUCTION FUNCTIONS

FUNCTION and bw (i1 : logic_vector_mv) RETURN logic_mv;
FUNCTION nand bw (il : logic_vector_mv) RETURN logic_mv;
FUNCTION or_bw (i1 : logic_vector _mv) RETURN logic_mv;
FUNCTION nor_bw (i1 : logic_vector_mv) RETURN logic_mv;
FUNCTION xor_bw (i1 : logic_vector mv) RETURN logic _mv;
FUNCTION xnor_bw (il logic_vector mv) RETURN logic_mv;

- — - —————————— " T — T ——— -] ——_——————— - - " ———————— - ——————— —

et 2t ——————————— " ——— " ——— iy = " " > W Y " " ——— i - —

FUNCTION "=% (11, i2 logic_mv) RETURN logic_mv;
FUNCTION "/=" (il, i2 : logic_mv) RETURN logic mv;
FUNCTION "=" (i1, 12 logic_vector_mv) RETURN logic_mv;

A2

FUNCTION "“/=" (i1, i2 : logic_vector mv) RETURN logic_mv;

The following function shall be used for standard components

FUNCTION Wired Outputs (signals : logic_vectorumv) RETURN logic mv;

-- The following functions <hall be used for on chip developme;t ONLY
FUNCTION Wired Or (Signals : logic_vector mv) RETURN logic_mv;
FUNCTION Wired_And (signals : logic_vector mv) RETURN logic_mv;

s -~ ——— —————— . s e oy = . T WS ot i R S S T ———————— ———— 4 - — - - ——

Function to translate H, L, or 2 on inputs to 1, 0 or X respectively.
-- Example usage: in a RAM model, without this function, a HIGH or LOW
-- state would be stored internally from the bus and subsequently be
-- erroneaously driven onto the bus during a read operation.
FUNCTION Filter (input : logic_mv) RETURN logic_mv;

e e e e o e e s s+ o o T ————— - St = " " —————————_— — — — i T _——————————

FUNCTION Posedge (signal sl : logic_mv) RETURN boolean;
FUNCTION negedge (signal sl : logic_mv) RETURN boolean;
~-- Posedge and NEgedge functions return TRUE on 0->1 or 1->0
-- transitions only
PROCEDURE Setup_check (constant input_le : time;

constant time_spec : time;

constant message : string;

constant err_ level : severity level);

PROCEDURE Hold check (constant input_le : time;
constant time_spec : time;
constant message : string;
constant err_level : severity level);

-- The following illustrates how to imbed setup and hold checks
-- procedures
-- into the VHDL models

~- DATA_CLOCK_SETUP: process

-- begin

-- wait on clk until do_timing_checks and posedge (clk,clk'last_value);
-- Setup_check (data'last_event, model times.ts_data, "DATA to CLOCK",
- warning);

-- end process DATA_CLOCK_SETUP;

~- DATA_CLOCK_HOLD: process

-- begin

-- wait on clk until do_timing checks andposedge(clk,clk’'last_value);
-- Hold_check (data'last_event, model times.th data, "DATA to CLOCK",
- warning) ;

-- end process DATA CLOCK HOLD;

-- function name: F_delay

A3

-- parameters:

-— in newlv -- bit mv -- new logic value

-— in delay0l -- <tcime -- 0->1 delay value

-- in delayl0 -- time =~- 1->0 delay value

-= returns: The appropriate delay to be used, given the new value

- and the 0-1 and 1-0 delays.

-~ purpose:Compute the appropriate delay to be used for the transition
- on an output port.

FUNCTION F_delay(newlv : IN logic_mv;
delay01l : IN time;
delayl0 : in time) RETURN time;

end BASICDEFS;

A.4

package body BASICDEFS is

The following is a preliminary defintion of the basic logic system
-- and associated operators/functions used for the EIA VHDL Model
-— Cor.iercial Component Specification.

- Created by Dave Cantwell/Huges (714-670-4677)
- & Len Finegold/General Dynamics

-- COPYRIGHT C Hughes Aircraft Co. 1989
-— Created 1/25/90
-— Version 0.1

- i ——————— — T ————— " " —— ——— 1 V> S0 = o T " Y — —————— " S o — ——

constant MAX SIZE : POSITIVE := 32; -- This is a deferred
-- constant which
-- should be initialized --
to the largest size
-- bus in design

constant UNINITIALIZED : logic_mv r= U,
constant UNKNOWN : logic_mv = VX'
constant ZERO : logic_mv = '0";
constant ONE : logic_mv = 1Y,
coastant HIGHZ : logic_mv = 12%;
constant LOW : logic_mv = 'LY;
constant HIGH : logic_mv := 'H';

constant ALL UNINITIALIZED

logic_vector_mv (MAX SIZE - 1 DOWNTO 0)
:= (others => UNINITIALIZED):;

constant ALL UNKNOWN : logic_vector mv (MAX SIZE - 1 DOWNTO 0)
:= (others => UNKNOWN) ;
constant ALL ZERO : logic_vector mv (MAX SIZE - 1 downto 0)

:= (others => ZERO);
logic_vector mv (MAX SIZE - 1 downto 0)
:= (others => ONE);
constant ALL_HIGHZ : logic_vector mv (MAX SIZE
:= (others => HIGHZ);

constant ALL_ONE

1 downto 0)

constant ALL_LOW : legic_vector mv (MAX SIZE - 1 downto 0)
:= (others => LOW);
constant ALL HIGH : logic_vector mv (MAX SIZE - 1 downto 0)

:= (others => HIGH);

—————— - —— — ————— T T " ———————— — " " ——————— > o ————— < " o o T T . s s S O . o o o

- —— ——— — ——— - — —— —— - " T —————— T T —————— T ————— " - ———— - ——————

- - —— —————— A . " — > —— T ——— o o o — ——————— 7S " - - — T " - ——

FUNCTION "and" (il, i2 : logic_mv) RETURN logic mv is

constant TABLE : logic_mv_table :=
((UNKNOWN, UNKNOWN, ZERO, UNKNOWN, UNKNOWN, ZERO, UNKNOWN) ,
(UNKNOWN, UNKNOWN, ZERO, UNKNOWN, UNKNOWN, ZERO, UNKNOWN),
(ZERO, ZERO, ZERO, ZERO, ZERO, ZERO, ZERO),
(UNKNOWN, UNKNOWN, ZERO, ONE, UNKNOWN, 2ERO, ONE),

A5

(UNKNOWN, UNKNOWN, ZERO, UNKNOWN, UNKNOWN, ZERO, UNKNOWN) ,

(ZERO, ZERO, ZERO, ZERO, ZERO, ZERO, ZERO),
(UNKNOWN, UNKNOWN, ZERO, ONE, UNKNOWN, 2ERO, ONE));
begin

RETURN Table{ il, i2);
end "and®;

FUNCTION "nand® (il, i2 : logic_mv) RETURN logic_mv is

constant TABLE : logic_mv_table :=

((UNKNOWN, UNKNOWN, ONE, UNKNOWN, UNKNOWN, ONE, UNKNOWN) ,
{UNKNOWN, UNKNOWN, ONE, UNKNOWN, UNKNOWN, ONE, UNKNOWN) ,
(ONE, ONE, ONE, ONE, ONE, ONE, ONE),
(UNKNOWN, UNKNOWN, ONE, ZERO, UNKNOWN, ONE, ZERO) ,
(UNKNOWN, UNKNOWN, ONE, UNKNOWN, UNKNOWN, ONE, UNKNOWN) ,
(ONE, ONE, ONE, ONE, ONE, ONE, ONE),
(UNKNOWN, UNKNOWN, ONE, ZERO, UNKNOWN, ONE, ZERO)) ;

begin

RETURN Table(il, i2);

end "nand®;

FUNCTION "“or"™ (il, i2 : logic_mv) RETURN logic_mv is

constant TABLE : logic mv_table :=
{ { UNKNOWN, UNKNOWN, UNKNOWN, ONE, UNKNOWN, UNKNOWN, ONE),
(UNKNOWN, UNKNOWN, UNKNOWN, ONE, UNKNOWN, UNKNOWN, ONE),

(UNKNOWN, UNKNOWN, ZERO, ONE, UNKNOWN, ZERO, ONE) ,

(ONE, ONE, ONE, ONE, ONE, ONE, ONE) ,

(UNKNOWN, UNKNOWN, UNKNOWN, ONE, UNKNOWN, UNKNOWN, ONE),

(UNKNOWN, UNKNOWN, ZERO, ONE, UNKNOWN, 2ZERO, ONE) ,

(ONE, ONE, ONE, ONE, ONE, ONE, ONE)) ;
begin

RETURN Table(il, i2):
end “or";
FUNCTION "nor"™ (il, i2 : logic_mv) RETURN logic_mv is
constant TABLE : logic mv_table :=

((UNKNOWN, UNKNOWN, UNKNOWN, ZERO, UNKNOWN, UNKNOWN, ZERO),
(UNKNOWN, UNKNOWN, UNKNOWN, ZERO, UNKNOWN, UNKNOWN, ZERO),

(UNKNOWN, UNKNOWN, ONE, ZERO, UNKNOWN, ONE, ZERO),

(ZERO, 2ERO, 2ERO, ZERO, ZERO, 2ERO, ZERO) ,

(UNKNOWN, UNKNOWN, UNKNOWN, ZERO, UNKNOWN, UNKNOWN, ZERO),

(UNKNOWN, UNKNOWN, ONE, ZERO, UNKNOWN, ONE, ZERO),

(ZERO, 2ERO, ZERO, 2ERO, ZERO, ZERO, ZERO)) ;
begin

RETURN Table(il, 1i2);

end "nor"™;

A.6

FUNCTION "xor"™ (il, i2 : logic_mv) RETURN logic_mv is

constant TABLE : logic_mv_table :=

({ UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN),
(UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN), i
(UNKNOWN, UNKNOWN, ZERO, ONE, UNKNOWN, ZERO, ONE) ,
(UNKNOWN, UNKNOWN, ONE, ZERO, UNKNOWN, ONE, ZERO),
(UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKMNOWN, UNKNOWN, UNKNOWN),
(UNKNOWN, UNKNOWN, ZERO, ONE, UNKNOWN, ZERO, ONE),
(UNKNOWN, UNKNOWN, ONE, ZERO, UNKNOWN, ONE, ZERO)) ;
begin
RETURN Table(il, i2);
end “xor";
FUNCTION xnor (il, i2 logic_mv) RETURN logic mv is
constant TABLE : logic mv_table :=
((UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN),
(UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN),
(UNKNOWN, UNKNOWN, ONE, ZERO, UNKNOWN, ONE, 2ERO),
(UNKNOWN, UNKNOWN, ZERO, ONE, UNKNOWN, ZERO, ONE) , :
(UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN), .
(UNKNOWN, UNKNOWN, ONE, ZERO, UNKNOWN, ONE, ZERO) , i
(UNKNOWN, UNKNOWN, ZERO, ONE, UNKNOWN, ZERO, ONE)) ;
begin
RETURN Table(il, i2); |
|
end xnor;) }
|
FUNCTION "not"™ (il : logic mv) RETURN logic_mv is
constant TABLE : logic _mv_array :=
(UNKNOWN, UNKNOWN, ONE, ZERO, UNKNOWN, ONE, ZERO);

begin
RETURN Table(il);
end *"not";

FUNCTION "and®™ (il, i2 : logic_vector_mv) RETURN logic_vector mv is
alias Argl : logic vector mv (1 to il'length) is il;
alias Arg2 : logic_vector mv { 1 to i2'length) is i2;
variable Store : logic_Vector mv (1 to il'length);

begin
assert il'length = i2'length report "Bus width Mismatch! "
severity warning;
for i in Store'range LOOP
Store (i) := Argl(i) and Arg2(i);
end LOOP;

A7

return STORE;
end "“and";

FUNCTION "nand" (il, i2 : logic_vector mv) RETURN logic_vector mv is
alias Argl : logic_vector mv (1 to il'length) is il; -
alias Arg2 : logic_vector mv (1 to i2'length) is i2;
variable Store : logic_Vector mv (1 to il'length);

begin
assert il'length = i2'length report "Bus width Mismatch! "
severity warning;
for i in Store'range LOOP
Store (i) := Argl (i) nand Arg2(i):;
end LOOP;
return STORE;
end "nand®;

FUNCTION "“or™ (il, i2 : logic_vector mv) RETURN logic_vector mv is
alias Argl : logic_vector mv (1 to il'length) is il;
alias Arg2 : logic_vector mv (1 to i2'length) is i2;
variable Store : logic_Vector_mv (1 to il'length);

begin
assert il'length = i2'length report %"Bus width Mismatch! "
severity warning;
for i in Store'range LOOP
Store (i) := Argl(i) or Arg2(i);
end LOOP;
return STORE;
end "or"™;

FUNCTION ®"nor®™ (il, i2 : logic_vector mv) RETURN logic_vector mv is
alias Argl : logic_vector mv (1 to il'length) is il;
alias Arg2 : logic_vector mv (1 to i2'length) is i2;
variable Store : logic_Vector mv (1 to il'length);

begin
assert il'length = i2'length report "Bus width Mismatch! *
severity warning;
for i in Store'range LOOP
Store(i) := Argl (i) nor Arg2(i);
end LOOP;
return STORE;
end "nor®;

FUNCTION "xor"™ (il, i2 : logic_vector mv) RETURN logic_vector_mv is
alias Argl : logic_vector mv (1 to il'length) is il;
alias Arg2 : logic_vector mv (1 to i2'length) is i2;
variable Store : logic_Vector mv (1 to il'length);

begin

assert il'length = i2'length report "Bus width Mismatch! "
severity warning;

A.8

for i in Store'range LOOP
Store (i) := Argl(i) xor Arg2(i);
end LOOP;
return STORE;
end "xor";

FUNCTION xnor (il, i2 : logic vector_mv) RETURN logic_vector_mv is
alias Argl : logic_vector mv (1 to il’length) is il;
alias Arg2 : logic_vector mv (1 to i2'length) is i2;
variable Store : logic Vector mv (1 to il'length);

begin
assert il'length = i2'length report "Bus width Mismatch! "
severity warning;
for i in Store'range LOOP
Store(i) := xnor (Argl(i), Arg2(i)):
end LOOP;
return STORE;
end xnor;

FUNCTION "not®™ (il : logic_vector_mv) RETURN logic_vector mv is
variable Store : logic_Vector mv (1 to il'length);

begin
for i in Store'range LOOP
Store (i) := not il (i);
end LOOP;
return STORE;
end "not";

FUNCTION and bw (il : logic_vector mv) RETURN logic mv is
variable Store : logic_mv := il (il'low):

begin
for i in il'low + 1 to il'high LOOP
CASE Store is
when ZERO | LOW => RETURN ZERO ;
when ONE | HIGH => Case 11(i) is
when ZERO | LOW => RETURN ZERO ;
when ONE | HIGH => NULL;
when others => Store := UNKNOWN;
end CASE;
when others => Case il(i) is
when ZERO | LOW => RETURN ZERO ;
when others => Store := UNKNOWN;
end CASE;
end CASE;
end LOOP;
RETURN Filter (Store);
end and bw;

o e —————————— —— T ——————— . — i —————————] .] —— ————————————

A9

]

FUNCTION nand_bw (il : logic_vector_mv) RETURN logic_mv is
variable Store : logic_mv := il(il'low);

begin
for i in il'low + 1 to il'high LOOP
CASE Store is
when ZERO | LOW => RETURN ONE;
when ONE | HIGH => Case il (i) is
when ZERO | LOW => RETURN ONE;
when ONE | HIGH => NULL;
when others => Store := UNKNOWN;
end CASE;
when others => Case il (i) is
when ZERO | LOW => RETURN ONE;
when others => Store := UNKNOWN;

end CASE;
end CASE;
end LOOP;
RETURN not Store;
end nand_bw;
FUNCTION or_bw (il : logic vector mv) RETURN logic_mv is

variable Store : logic_mv := ilTil'low);

begin
for i in il'low + 1 to il'high LOOP
CASE Store is
when ONE | HIGH => RETURN ONE;
when ZERO | LOW => Case il (i) is
when ZERO | LOW => NULL;
when ONE | HIGH => RETURN ONE;
when others => Store := UNKNOWN;
end CASE;
when others => Case il(i) is
when ONE | HIGH => RETURN ONE;
when others => Store := UNKNOWN;
end CASE;
end CASE;
end LOOP;
RETURN Filter (Store);
end or_bw;
FUNCTION nor_bw (il : logic_vector _mv) RETURN logic mv is
variable Store : logic mv := il (il'low);

begin
for i in il'low + 1 to il'high LOOP
CASE Store is
when ONE | HIGH => RETJRN ZERO;
when ZERO | LOW => Case il (i) is
when ZERO | LOW => NULL;
when ONE | HIGH => RETURN ZERO;
when others => Store := UNKNOWN;
end CASE;
when others => Case il (i) is
when ONE | HIGH => RETURN ZERO;
when others => Store := UNKNOWN;
end CASE;

A.10

end CASE;
end LOOP;
RETURN not Store;
end nor_bw;
FUNCTION xor_bw (il : logic_vector_mv) RETURN logic mv is
variable Store : logic_mv := il(il'low);

begin
IF il'length > 1 then
for i in il'low + 1 to il'high LOOP
CASE Store is

when ZERO | LOW => Case 1il(i) is
when ZERO | LOW => NULL;
when ONE | HIGH => RETURN ONE;
when others => RETURN UNKNOWN;

end CASE;

when ONE | HIGH => Case il (i) is
when ZERO | LOW => RETURN ONE;
when ONE | HIGH => NULL;
when others => RETURN UNKNOWN;

end CASE;
when others => RETURN UNKNOWN;
end CASE;
end LOOP;
RETURN ZERO;
else
RETURN Filter (Store);
end if;
end xor_ bw;
FUNCTION xnor_bw (il : logic_vector mv) RETURN logic_mv is
variable Store : logic_mv := il (il'low);

begin
IF il'length > 1 then
for i in il'low + 1 to il‘'high LOOP
CASE Store is

when ZERO | LOW => Case il(i) is
when ZERO | LOW => NULL;
when ONE | HIGH => RETURN ZERO;
when others => RETURN UNKNOWN;

end CASE;

when ONE | HIGH => Case il (i) is
when ZERO | LOW => RETURN ZERO;
when ONE | HIGH => NULL;
when others => RETURN UNKNOWN;

end CASE;
when others => RETURN UNKNOWN;
end CASE;

end LOOP;

RETURN ONE;
else

RETURN not Store;
end if;

end xnor_bw;

A 11

-- COMPARISON OPERATORS

FUNCTION "=" (il, i2 : logic_mv) RETURN logic_mv is
constant table : logic mv_table :=
((UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN),
(UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN),

(UNKNOWN, UNKNOWN, ONE, ZERO, UNKNOWN, ONE, ZERO) ,
{ UNKNOWN, UNKNOWN, ZERO, ONE, UNKNOWN, ZERO, ONE) ,
(UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN),
(UNKNOWN, UNKNOWN, ONE, ZERO, UNKNOWN, ONE, ZERO),
(UNKNOWN, UNKNOWN, ZERO, ONE, UNKNOWN, ZERO, ONE)) ;
begin
RETURN table (il, 1i2);
end "=%;

FUNCTION "/=" (il, i2 : logic_mv) RETURN logic_mv is
constant table : logic mv_table :=
((UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN),
(UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN),

{ UNKNOWN, UNKNOWN, ZERO, ONE, UNKNOWN, ZERO, ONE),

{ UNKNOWN, UNKNOWN, ONE, ZERO, UNKNOWN, ONE, ZERO),

(UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN),
(UNKNOWN, UNKNOWN, ZERO, ONE, UNKNOWN, ZERO, ONE) ,

(UNKNOWN, UNKNOWN, ONE, 2ERO, UNKNOWN, ONE, ZERO)) ;
begin

RETURN table (il, i2);
end */=";

FUNCTION "=" (il, i2 : logic_vector mv) RETURN logic mv is
alias Argl : logic _vector mv (1 to il'length) is il;
alias Arg2 : logic_vector mv (1 to i2'length) is i2;
variable Store : logic_mv;

begin
assert il'length = i2'length report "Bus Width Mismatch!"®
severity warning;
for i in il'range LOOP
Store := Argl (i) = Arg2(i);
if Store /= ONE then
RETURN Store;
end if;
end LOOP;
RETURN ONE;
end "=%;

FUNCTION "/=" (il, i2 : logic_vector_mv) RETURN logic mv is
alias Argl : logic_vector mv (1 to il'length) is il;
alias Arg2 : logic_vector mv (1 to i2'length) is i2;
variable Store : logic_mv;

begin
assert il'length = i2'length report "Bus Width Mismatch!"
severity warning;
for i in il'range LOOP
Store := Argl(i) /= Arg2(i);

A.12

if Store /= ONE then
RETURN Store;
end if;
end LOOP;
RETURN ONE;
end "/=";

e e i ———— — — ——————_ e " T " - = " ————— T — — —— ———— — ——— - ——— v ———

FUNCTION Wired Outputs (signals logic_vector mv) RETURN logic mv is
variable result : logic_mv := HIGHZ; -- return 'Z’' when no active
driver
constant Table : logic mv_table :=
{ { UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN),
(UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN),
(UNKNOWN, UNKNOWN, ZERO, UNKNOWN, ZERO, ZERO, ZERO),
(UNKNOWN, UNKNOWN, UNKNOWN, ONE, ONE, ONE, ONE),
(UNKNOWN, UNKNOWN, ZERO, ONE, HIGHZ, LOW, HIGH),
(UNKNOWN, UNKNOWN, ZERO, ONE, LOW, LOW, HIGHZ),
(UNKNOWN, UNKNOWN, ZERO, ONE, HIGH, HIGHZ, HIGH));
begin
for i in signals'range LOOP

result := table (result, signals(i));
exit when result = UNKNOWN;
end LOOP;
return result;
end Wired Outputs;

- o e - —————— - —— ———————— . i} o = e T " T — T T ——————————— o - — —————

FUNCTION Wired Or (signals : logic_vector_mv) RETURN logic_mv is

variable result : logic_mv := HIGHZ; -- return 'Z' when no active
driver

constant Table : logic_mv_table :=

((UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN),

(UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN),

(UNKNOWN, UNKNOWN, ZERO, ONE, ZERO, ZERO, ZERO),

(UNKNOWN, UNKNOWN, ONE, ONE, ONE, ONE, ONE),

(UNKNOWN, UNKNOWN, ZERO, ONE, HIGHZ, LOW, HIGH),

(UNKNOWN, UNKNOWN, ZERO, ONE, LOW, LOW, HIGHZ),

(UNKNOWN, UNKNOWN, ZERO, ONE, HIGH. HIGHZ, HIGH));

begin

for i in signals'range LOOP

result := table (result, signals(i));
exit when result = UNKNOWN;
end LOOP;
return result;
end Wired Or;

———————————— A — ———— - - " - ——————— - 1 " ———— ————— " " > " > " —————

FUNCTION Wired AND (signals : logic_vector_mv) RETURN logic _mv is

variable result : logic_mv := HIGHZ; -- return 'Z' when no active
driver

constant Table : logic mv_table :=

{ { UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN),

{ UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN, UNKNOWN),

(UNKNOWN, UNKNOWN, ZERO, ZERO, ZERO, ZERO, ZERO),

(UNKNOWN, UNKNOWN, ZERO, ONE, ONE, ONE, ONE),

A.13

(UNKNOWN, UNKNOWN, ZERO, ONE, HIGHZ, LOW, HIGH),
{ UNKNOWN, UNKNOWN, ZERO, ONE, LOW, LOW, HIGHZ),
(UNKNOWN, UNKNOWN, ZERO, ONE, HIGH, HIGHZ, HIGH)):;
begin

for i in signals'range LOOP
result := table (result, signals(i))
exit when result = UNKNOWN;
end LOOP;
return result;
end Wired AND;

- FUNCTION name : Filter

- translates logic_mv states:
-- HIGH -> ONE

- LOW -> ZERO

- HIGHZ -> UNKNOWN

FUNCTION Filter (input : logic_mv) RETURN logic_mv is
constant filter_ table : logic_mv_array :=
(UNKNOWN, UNKNOWN, ZERO, ONE, UNKNOWN, ZERO, ONE);
begin
RETURN filter table(input):
end Filter;

- - - —————— T —— T " s ——— S e 4} T > o T i i T " " —— o~ W —— > —— ——

- — ———————— — T ————— > " —— ——— S — A - - A3 " P = ——— — > T

FUNCTION Posedge (signal sl : logic_mv) RETURN boolean is
begin
RETURN sl = ONE and sl'last_value = ZERO and sl'event;
end Posedge;

——— - - - —— — ———— T —————— " ——— ———— - " —————— > ¢ - o " " U o

FUNCTION Negedge {(signal sl : logic_mv) RETURN boolean is
begin
RETURN sl = ZERO and sl'last_value = ONE and sl'event;
end negedge;

- ——— ———— i ——— " - . — ————— i S 7o o T T A S —— " -

PROCEDURE Setup_check (constant input_le : time;
constant time spec : time;
constant message : string;
constant err level : severity level) is
begin
assert input_le >= time_ spec
report message & " setup violation"™ severity err_level;
end Setup_check;

————— - —— ——————— A T 40} e A T ——— o T ———— " — ——— - T — - ——

PROCEDURE Hold_check (constant input_le ¢ time;
constant time_ spec : time;
constant message : string;
constant err level : severity level) is

begin

A.14

assert input_le > time spec
report message & " setup violation" severity err level;

end Hold check;

FUNCTION F_delay (newlv : in logic_mv;

delay0O1 in time;
delaylO in time) RETURN time is
begin
CASE newlv is
when ZERO => RETURN delayl0;
when ONE => RETURN delay0l;
when others => if (delay0l > delayl0) then return delay0l;
else
return delaylQ;
end if;
end CASE;

end F_delay;

end BASICDEFS;

Appendix B: The Behavioral Model

This appendix contains complete behavioral examples of sequential circuits specified via

the model proposed in Chapter 3. Each example is presented in the following order:

1.

2.

3.

4.

5.

Packages and package bodies required by the design,

The sequential circuit's entity description,

The sequential circuit's architectural body,

The test bench entity and architectural body used to test the sequential circuit, and,

A simulation report generated from a sample run.

The first example is a synchronous Mealy sequential circuit. The second example is an

asynchronous Moore circuit. The final example is the CPU controller (a synchronous "hybrid”

sequential circuit). They may be found on the following pages:

Behavioral Design Eage
Synchronous Mealy B.2

Asynchronous Moore B.19
CPU Controller B.33

B.1

-- File name:

~- Description:

-- Status: It is

-- Support files:
-- Creation Date:

-- Created by:
-— Address:

use work.BASICDEFS.all;
-- the EIA Standard package BASICDEFS

package Sequential Circuit_Package is

Type States

- First_State,

constant
constant
constant

Type Transition_Conditions is (

Type Transition Conditions_vector is array (natural range <>) of
Transition_Conditions;

Sequential_Circuit_ Package.vhd
The following VHDL code is a draft version of
the State machine package required to support

the various architectural models.

complete.

BASICDEFS.vhd (EIA's BASICDEF's package)
11 July 90

Rick Miller

AFIT/ENG

Wright-Patterson AFB, OH, 45433

(513)~-258-1024 or (513)-255-4960

is (
Unknown_State,
Second_State,

Third State
):

First_State_output : logic_vector mv := "001";
Second_State_output : logic_vector_mv := "010";
Third State_output : logic_vector_mv := "100";

No_ Transition,
goto_First_ State,
goto_Second State,
goto_Third_State
):

B.2

- e o s (. - ———_— ——— 7 — > " ——— — — —— i ——— o ———_—— o —— - — -

Function Transition_Resolution (il : Transition_Conditions_vector)
return Transition Conditions;

end Sequential Circuit_Package;

package body Sequential Circuit_Package is

o — ———— Y —— - - T ——— i — —— — " - _— —— " —— " . T — s " S ———— ——— " —— — -

o ———— Y — - ———— T . T = A A i o — - ——— = - -

Function Transition_ Resolution (il : Transition_Conditions_vector)
return Transition_Conditions is

begin
for I in il'Range loop
RETURN il(I):

end loop;
RETURN No_Transition;

end;

end Sequential Circuit_Package ;

B.3

e = e = e s T o o = T S — —————— - =~ - - —————

-- File name: Sequential Circuit_.vhd

-- Description: synchronous Mealy state machine entity.

-- Status: It is complete.

== Support files: BASICDEFS.vhd (EIA's BASICDEFs package)
-- Creation Date 11 July 90

-—- Created by: Rick Miller

-- Address: AFIT/ENG

- Wright-Patterson AFB, OH, 45433

-- Phone: (513)-258-1024 or (513)-255-4960

use work.Sequential Circuit_Package .all;
-- This package makes the appropriate type and variable
-- declarations required by the particular sequential circuit.

use work.BASICDEFS.all;
-- The BASICDEFS package is pressumed located in a VHDL design
—-- library sublibrary named EIA.

entity Sequential Circuit is
-- generic();

port (
input_signals ! in logic_vector mv (1 downto 0);
out_1,
out_2,
out_3 : out logic mv := 'U’';
RESET : in logic_mv;
CLOCK : in logic_mv

);

end Sequential Circuit ;

B.4

-- File name: Sequential Circuit.vhd
~-- Description: synchronous Mealy state machine architecture.
-— Status: It is complete.

-- Support files: BASICDEFS.vhd (EIA's BASICDEFs package)
--= Sequential Circuit_Package.vhd

-- Creation Date 11 July 90

-— Created by: Rick Miller

- Address: AFIT/ENG

- Wright-Patterson AFB, OH, 45433

- Phone: (513)-258-1024 or (513)-255-4960

architecture synch mealy arch of Sequential Circuit is

signal Present_State, Next State : States := Unknown_State;

signal Transition : Transition Resolution
Transition_Conditions
BUS := No_Transition;
signal state_out_1,
state_out_2,
state_out_3 : Wired Outputs logic_mv BUS := 'U';
begin

out_1 <= state_out_1;
out_2 <= state_out_2;
out_3 <= state_out_3;

-- synchronize the state to state transitions to the clock.
process (clock)
begin
if (clock = 'l' and clock'event)
then Present_ State <= Next_State;

end if;
end process;

-- initialize and reset capability
-~ First State Process
RESET_BLOCK:block (RESET = '1"')
begin
process (GUARD) begin
if GUARD then Transition <= goto_First State;
else
Transition <= null;

B.5

end if;
end process;
end block RESET_ BLOCK;

-- the State Transitions
process (transition)
begin
case Present_ State is
when First State =>
case transition is
when goto_second_State =>
Next State <= Second State;
when goto_ Third_Stalte =>
Next State <= Third State;
when others =>
end case;

when Second_State =>
case transition is
when goto_First_ state =>
Next State <= First State;
when goto_Third_state =>
Next State <= Third_ State;
when others =>
end case;

when Third_State =>
case transition is
when goto_ First_state =>
Next_ State <= First State;
when goto_Second_state =>
Next State <= Second_State;
when others =>
end case;

when Unknown_State =>
case transition is
when goto First_state =>
Next State <= First_ State;
when others =>
end case;

end case;
end process;

-- First State Process
FIRST:block (Present_State = First State)
begin
process (GUARD, INPUT_ signals) begin
if GUARD then
case INPUT_signals is
when "10" => Transition <= goto_Second_State;

state_cut_1 <= Second_State_Output (0) ;
state_out_2 <= Second_State_Output (1) ;
state out_3 <= Second_State_Output (2) ;

B.6

when "11" => Transition <= goto_Third State;

state_out_1 <= Third_State_Output (0);
state_out_2 <= Third State_Output (1)
state_out_3 <= Third State_ Output (2);

when others =>
transition <= no_transition;
state out_1 <= '0’';
state_out_2 <= '0°%;
state_out_3 <= '0';

end case;

else
transition <= null;
state out_1 <= null;
state_out_2 <= null;
state_out 3 <= null;

end if;

end process;

end block FIRST;

-- Second State Process
SECOND:block (Present_ State = Second_State)
begin
process (GUARD, INPUT signals) begin
if GUARD then
case INPUT_signals is
when "01" => Transition <= goto_First_State;

state_out_1 <= First State_Output (0):
state out_2 <= First State_Output (1):
state out_3 <= First_State Output (2);

when "11" => Transition <= goto_Third_State;

state_out_1 <= Third State_Output (0);
state_out_2 <= Third_State_Output (1);
state_out_3 <= Third State_Output (2);

when others =>
Transition <= no_tr.usition;
state out_1 <= '0’';
state_out_2 <= '0';
state_out_3 <= '0';

end case;

else
transition <= null;
state_out_1 <= null;
state_out_2 <= null;
state_out_3 <= null;

end if;

end process;

end block SECOND;

-- Third State Process

THIRD:block (Present_State = Third State)
begin
process (GUARD, INPUT_signals) begin

B.7

if GUARD then
case INPUT_signals is

when "01"™ => Transition <= goto First State;
state_out_1 <= 5 o
state_out 2 <=
state_out_3 <=

First_State_Output (0);
First_State_Output (1)
First_Scate_output (Z);

when "10" => Transition <= goto_Second_State;
state_out_1 <=
state_out_2 <=
state_out 3 <=

when others =>
transition

state_out_1 <=
state out 2 <=
state_out_ 3 <=

end case;

else
transition <= null ;
state_out_1 <= null;
state out_2 <= null;
state_out_3 <= null;

end if;

end process;

end block THIRD;

end synch mealy arch;

8.8

Second_State_Output (0) ;
Second_State_Output (1) ;
Second_State_Output (2);

NO TRANSITION;
IOT’.
'o';
’O';

- e "t — . ————————— - o~ . — ——— —— - —————— ————— . e ——

-~ File name: testbench.vhd

-- Description: testbench for synchronous Mealy state machine
- architecture.

-- Status: It is complete.

-- Support files: BASICDEFS.vhd (EIA's BASICDEFs package)
-- Sequential Circuit_ Package.vhd

-- Creation Date 11 July 90

-- Created by: Rick Miller

-- Address: AFIT/ENG

- Wright-Patterson AFB, OH, 45433

-= Phone: (513)-258-1024 or (513)-255-4960

use work.BASICDEFS.all;

use WORK.Sequential Circuit_Package.all;
use STD.SIMULATOR_STANDARD.all;

use STD.TEXTIO.all;

entity TEST_BENCH is
end TEST_ BENCK;

architecture synch Mealy example of TEST_BENCH is

component state machine

port (
input_signals : in logic_vector_mv (1 downto 0);
out_1,
out_2,
out_3 : out logic_mv;
RESET ! in logic_mv;
CLOCK ¢ in logic_mv

)i
end component;

for all : Sequential Circuit use
entity WORK.Sequential Circuit (synch mealy_ arch);

signal instruction : logic_vector_mv (1 downto 0) := "00";
signal CLOCK : logic_mv;
signal RESET : logic_mv;
signal MOORE_STATE : STATES;
signal ouT_1,
OUT_2,
ouT_3 : logic_mv;
begin

B.9

RESET <= '1' , '0' after 5ns;

process
file INSTRUCTICN : TEXT 138 in "MEALY_INSTRUCTIONS";
variable L : Line;
variable machine_code : bit_vector (1 downto 0);
begin

readline (INSTRUCTIONS, L);
if ENDFILE (INSTRUCTIONS) then terminate; end if;
read (L, machine code);
case machine _code is
when "00" => instruction <= "QQ";
when "01"™ => instructicn <= "(01";
when "10" => instruction <= "1Q0";
when "11" => instruction <= "11";
end case;
wait for 30ns;
end process;

process
begin
set maximums (10000,100) ;
tracing_on;
wait for 200ns;
terminate;
end process;

make Clock : process
begin
wait for 2ms;
CLOCK <= '1°';
wait for 4ns;
CLOCK <= 'Q°*;
wait for 2ns;
end process make_ Clock;

UUT : Sequential Circuit
port map (instruction,
OoUT_1, OUT_2, OUT_3,
RESET,
CLOCK
Yi

end synch Mealy example;

B.10

{uTyoeR @3els puUd

{ALYLS aussaxd ! ann/ Teubys qoeTes
{uoyaTsue1l : ann/ Teubjs joaTes

{g ano : Teubts ao0ates

{Z qno : Teubys 3oeTes

{1 ano : Teubys qoeTes

fuotaoniisuy : Teubis 3oeTes

{9591 : Teubys qoaTes

{3001y : Teubys 3oales

{su uy 3usaa’ Aq steubis erdwes--

{gu ut uoyioesueiyz Aq sTeubis ardwes
!Tequozfioy sf Jewiol Teubys

!0y ST yabuay abed

_ £0Z1 ST u3Iptm ebed

L yoxe ATesW youkg, s1 sweu gjxodeix
utbaq

8T Sujyoel o3eas iodal uoeINWIS

: abenbue1 TOoI3UO0) 310d8y

9vIEBYLPTIC fe3IT3Qq XeR
LOBGLLPSBIEOZLEETZE :BWTL XeW

adarasrdwexa ATesw youdks : o773 3andinp 3zodey
101 RIYAW :3T7Td abenbueT Toizuol 310day

ebieZ:€Z ouwyl unyd
0661-80-90¥ :93eg uny
1 :I8JT3USpI uny
g€higzige tAWTL uOFIeaI) TBUIIY
0661-80-20Y :81eg uoTaesal) Tauiay
ATANYXE XTVAN HONAS<<ATVAW HONAS SATAWYXE ONINYOM HITIIWNN>> :sweN AzeiqyT Tauzay
«Uo1e ATesw youks :awen 3xoday

310dsy uoTiRTOWIS TPUA

LUo1e ATeal youksg
T 395v4 103e13ua 310dsy TTQHA 0G:6Z2°€Z 0661-80~-9NV¥

B.11

¢ dovd

(uoyioesueil ou §93ROTPUYT , ,) uorloesuell Aq pajaodsa sie ssntea Teubis
uofleTnNWIS jo pug 03 SN 0 woxl sT 331odazr 103 poyrad surg
UOTIBTNWTS JO 3Ie3S 8yl O3 JATIRTSI SN UT ST 2uWil

! uotjewiojul Aewrol yizoday

Wyoae ATesaW YouAs

Io3e1auad 3r0dsy TAHA 0S:62:€Z 0661-80-ONY

B.12

4IY¥1S dNODdS

dIVIS aNOD3S OLO9D
w0Tu

AIVIS 1SAId

4IV1S 1SHId

AIVIS LSHIJ

NOTIISNYMI ON

IIVIS ISMIJ 0L09
AIVLS 1SH1d

FIVIS LSHId OI09 Ze Za 2
B NOILISNVYI ON X, X X wT0u
FIYIS NMONMNO NOILISNYEI ON o 0 0y u00u

4IVIS INISTYd NOTIISNWAL €100 Z Ino 1 In0o (0 OINMOQ T)NOILDNYISNI

WUo1e Atesw youks
€ 3ovd 103e13ua9 Ixodsd TAHA

e T
en

13SNd

2+
T+
be
€+
Z+
T+
ot
Z+
T+
92
T+
zz
Z+
T+
81
T+
bI
z+
T+
0t
T+

T+
v+
£+
Z+
T+
Z+

e

AD0TO

0S:62:EC 0661-80-ONV

B.13

B NOILISNWII ON
JIVLS MITHL

4IVLS QHIHL 0loD

4IY¥1S ANODAS

4IYLS aNODdS

4IVIS aNODES

NOILISNYYI ON

ALYLS INISTd NOILISNVEL

b 3OVd

wlla

€100 Z 100 T IN0 (0 OINMOQ T)NOIILONUISNI

wuore ATeaW youAs
I03e1auss 310dad TAHA

13asad

1+
L
1+
oL
b+
€+
2+
T+
99
T+
9
€+
+
1+
09
Z+

86
T+
(2%
2+
1+
0s
T+
24
2+
1+
4
T+
8¢
b+
€4

). tolojy to] (SN)

0G:62:€2 0661-80-90Y

B.14

4IYIS ANODIS

ALYLS ANODES

AIVIS ANOIAS

AILYLIS MITHI

JIVLS QIIHI

JIVLS @IIHI

ALVIS INISTHJ

S 3ovd

-O-
NOILISNWYEI ON
. _ _.ﬂ.
IYIS ANODES 0IOD
-Oﬁ-.
NOILISNWEI € Lo Z I1no T Ino (0 OINMOQ T)NOILONMISNI LASIM

............................. SHWNYN TYNOTS == == mm o m oo = e e e oo

Wuoxe ATeaw youks
103e18Ud9) 310dayw TAHA

0ZT
1+
§T1
Z+
T+
[AN
1+
01T
2+
1+
901
T+
[4¢h¢
v+
£+
4+
1+
86
T+
1433
€+
T+
1+
06
T+
98
Z+
1+
Z8
1+
aL
2+

B.15

(SN)

0G:62:€Z 0661-80-5NV

NOILISNYYL ON
AIYLS ANODAS

ALYIS ANOJES OLO9D

JIVLS QHIHI

ALYLS QHIHL

ALYLS QMIHL

NOILISNYYL ON
IIYLS AMIHL

ALYLS MIIHL 0LOD

ALYIS INISTd NOILISNVYL

9 3ovd

w0Tu

wlTu

€ 1no Z 1no 1 100 (0 OINMOQ T)NOIIDOWISNI Lasdad

||||||||| SHWYN TYNOTS == —mm oo mm s o m o s oo e

WUoze ATesw youAs
103013us39 3xoday TQHA

b+
£+
z+
T+
12
€+
Z+
T+
0ST
Z+
1+
AR
T+
chl
T+
T+
8E1
T+
LA
T+
14
0ET
T+
921
b+
€+
T+
1+
[t
£+
2+
T+

(SN)

............ | EWIL

0G:62:EC 0661-80-20V¥

B.16

861
Z+
1+
pel
T+
06T
b+
£+
Z4+
T+
9871
T+
781
£+
Z+
1+
0871
Z+
T4
8LT
1+
bLT
Z+
1+
oLt
T+
991
4+
T+
291
1+
85T

4IVLS 1SA1d

NOILISNYMI ON
ALYIS LSHId

ALVLS IS¥Id OLOD
:Ho-

JILVLS ANODES

B.17

FIVIS ANODIS

ALYIS ANODIS

FIVLS INISTI NOILISNYYL £ 100 Z 100 1 100 (0 OJNMOQ T)NOILONYISNI Idasad AD0TD (sSN)

e e E S E PR SHWYN TYNDIS——— === wm—mmmmmmmmm o mmmmeme oo B e TR | FWIL

Wyoxe ATeaW youiks
L 39vYd Io3e1auag 310dad TAHA 0G:62:€7 0661-80-90NY

10 | T+
_ |
dLYLS INASdA NOILISNWYL € INo Z 1no 1 LNOo (0 OINMOQ T1)NOILONWISNI LIsay). tolojs o) | (SN)
|
.. SAWYN TYNOIS———=———~—m=mm=mmmm—mmeecemmm—mmemmmmmem—mmmemmeo | AHIL

LU21e ATeaW youksg
g AOVd 103w18U89 3110484 TAHA 05162362 0661-80-9NY

B.18

-—- File name:

-—- Description:

-—- Status: It is

-- Support files:
-- Creation Date:

-- Created by:
- Address:

moore pkg.vhd
The following VHDL code is a draft version of
the State_machine package required to support

the various architectural models.

complete and has been successfully simulated.

EIA basicdefs.vhd (EIA's BASICDEF's package)
11 July 90

Rick Miller

AFIT/ENG

Wright-Patterson AFB, OH, 45433

(513)~258-1024 or (513)-255-4960

use work.BASICDEFS.all;
-- the EIA Standard package BASICDEFS

package State Machine_ Package is

Type States

constant
constant
constant

is {
Unknown_State,
First_State,
Second_State,
Third State

)

First State_output : logic_vector mv := "001%;
Second_State_output : logic_vector mv := "010%;
Third State_output : logic_vector_mv := "100%;

Type Transition_ Conditions is (

No_Transition,
goto_First_sState,
goto_Second~State,
goto_Third State
)

Type Transition_Conditions_vector is array (natural range <>) of
Transition_Conditions;

-- Transition Resolution Function

Function Transition Resolution (il : Transition Conditions_vector)
return Transition_Conditions;

end State Machine Package;

B.20

- ——— —— — - _ ——— T — ——— T ————— —— = ——

-~ File name: moore_pkg_body.vhd
-- Description: The following VHDL code is a draft version of the
- generic state machine entity.

-- Status: It is complete and has been successfully simulated.
-~ Support files: BASICDEFS.vhd (EIA's BASICDEFs package)

-- Creation Date 11 July 90

~- Created by: Rick Miller
- Address: AFIT/ENG
- Wright-Patterson AFB, OH, 45433

- Phone: (513)-258-1024 or (513)-255-4960

———— — ————— ———— — —— " —— " —— " ——— T " > T — - — —— - " - > T e T

-- Transition Resolution Function

- ———— — —— S o o T T T —— e T " > G " o — o —— " ———r — — - ———— —— — -

Function Transition Resolution (il : Transition Conditions_vector)
return Transition Conditions is

begin
for I in il'Range loop
RETURN il(I);
end loop;
RETURN No_Transition;
end;

end State_Machine Package;

B.21

———— - A T - —— —— T —~ ——— — — — — ~ ——— ———— e e — = ————— ————_—_— = - ——

-- File name: state machine_.vhd

-- Description: The following VHDL code is a draft version of the
- generic state machine entity.

-~ Status: It is complete and has been successfully simulated.
-- Support files: BASICDEFS.vhd (EIA's BASICDEFs package)
-- MOORE _pkg.vhd (State_machine_ packagae)

- MOORE_pkg body.vhd (body of above)
- testbench.vhd

-- Creation Date 11 July 90

-- Created by: Rick Miller
- Address: AFIT/ENG
- Wright-Patterson AFB, OH, 45433

-- Phone: (513)-258-1024 or (513)-255-4960

use work.State_Machine_Package.all;

-- This package makes the appropriate type and variable
declarations

-- required by the particular state machine.

use work.BASICDEFS.all;
-- The BASICDEFS package is pressumed lccated in a VHDL design
-- library sublibrary named EIA.

entity State Machine is
-- generic{();

port (
input_signals : in logic_vector mv (1 downto 0);
out_1,
out_2,
out_3 out logic_mv := 'U';

RESET : in logic_mv
)

end State_Machine;

B.22

~- File name: synch_moore_arch.vhd

-- Description: The following VHDL code is a draft version of the
- asynchronous moore state machine.

-- Status: It is complete and has been successfully simulated.

-- Support files: BASICDEFS.vhd (EIA's BASICDEFs package)
- MOORE_pkg.vhd (State_machine_packagae)
-- MOORE_pkg body.vhd (body of above)

-- asynch _moore_entity.vhd

-- testbench.vhd

~- Creation Date 11 July 90

-- Created by: Rick Miller

- Address: AFIT/ENG

-— Wright-Patterson AFB, OH, 45433

-= Phone: (513)-258-1024 or (513)-255-4960

e e e o - ————————————————— " A - A . A - e - ——————— - — — — — ———————— -

- ———————————— —— — i~ = o " - ——— ———————

- Declarative block
- The types States and Transition Conditions are found
-- in the State Machine_ Package. (Moore_pkg.vhd)

-- The type logic_mv is found in the package BASICDEFS.
- (EIA basicdefs.vhd)

-- The resolution function Transition Resolution is
-- found in the State Machine Package. (Moore_pkg.vhd)

- The resolution function Wired Qutputs is found in
- the package BASICDEFS. (EIA basicdefs.vhd)

signal Present State, Next_ State : States := Unknown_State;
signal Transition : Transition_Resolution
Transition_Conditions
BUS := No_Transition;
signal state_out 1,
state_out_2,

state cut_3 : Wired_Outputs logic_mv BUS := 'U’;

begin

B.23

-- For now, the state outputs are assigned to temporary signals,
- state_outl, state_out2, and, state_out_3. These signals
-- are then assigned to the entity's ports here.

out_1 <= state_out_1;
out 2 <= state out_2;
out_3 <= state_out_3;

-= The following block operates concurently with the state machine.
-- It provides the ability to reset or initialize the
- machine to a known starting state.

RESET_BLOCK:block (RESET = '1')
begin
process (GUARD) begin
if GUARD then Transition <= goto_First_State;
else
Transition <= null;
end if;
end process;
end block RESET_BLOCK;

- This process determines the "next"™ state of the state machine.
-- Sensitive to changes in the signal transition, this process only
-- operates when a state to state transition is requested.

-- Optional timing information can be inserted here, such as:

- Present_State <= SOME_NEW_STATE after some_delay time;

process (transition)
begin
case Present_State is
when First State =>
case transition is
when goto_second_State =>
Present_State <= Second_State;
when goto_Third State =>
Present_State <= Third State;
when others =>
end case;

when Second State =>
case transition is
when goto_First_state =>
Present_State <= First State;
when goto_Third_state =>
Present_State <= Third_State;
when others =>
end case;

when Third State =>
case transition is
when goto_First_state =>
Present State <= First_State;

B.24

when goto Second_state =>
Present_State <= Second_State;
when others =>
end case;

when Unknown State =>
case transition is
when goto_ First_state =>
Present_State <= First_State;
when others =>
end case;

end case;

end process;

—————— > —— ————— . 24 " ——————— —— —— " — - ——————— -

- The following blocks represent the individual states of the

-- First St
FIRST:block
begin

state machine. Each block has a guard statement to
determine the operation of the block. That guard signal
along with INPUT signals determines the state operation,
If the guard is true, and inputs have changed, then

the outputs or the transition variable are set.

If the guard is false, null drivers are assigned to the
signals.

To improve the design's readability, each process may
be written to call subprograms which in turn would
represent the state's functionality.

ate Process
(Present_State = First State)

process (GUARD, INPUT_signals) begin
if GUARD then

else

case INPUT_signals is
when "10" => Trangition <= goto_Second State;
- when "11" => Transition <= goto_Third State;
when others =>
transition <= no_transition;
state _out_1 <= First_State_ Output (0);
state_out_2 <= First_ State_Output(l);
state_out_3 <= First_ State_Output (2);
end case;

transition <= null;
state_out_1 <= null;
state_out 2 <= null;
state_out_3 <= null;

end if;
end process;
end block FIRST;

-- Second State Process
SECOND:block (Present_State = Second_State)

begin

process (GUARD, INPUT_signals) begin
if GUARD then

case INPUT_signals is

B.25

when "01" => Transition <= goto_First_State;
when "11" => Transition <= goto:Third_State;
when others =>
Transition <= no_transition;
state_out_1 <= Second_State_Output (0) ;
state_out_2 <= Second State_Output (1);
state_out_3 <= Second_State_Output (2);

end case;

else
transition <= null;
state_out_1 <= null;
state_out_2 <= null;
state_out_ 3 <= null;

end if;

end process;

end block SECOND;

-- Third State Process
THIRD:block (Pregent State = Third State)
begin
process (GUARD, INPUT signals) begin
if GUARD then
case INPUT_signals is
when "01" => Transition <= goto_First_State;
when "10" => Transition <= goto_Second State;
when others =>
transition <= NO_TRANSITION;
state_out_1 <= Third State_Output (0);
state_out_2 <= Third State_Output (1);
state_out_3 <= Third State_Output (2);

end case;

else
transition <= null ;
state_out_1 <= null;
state_out 2 <= null;
state_out_3 <= null;

end if;

end process;

end block THIRD;

end asynch_Moore;

B.26

-- File name:

-- Description:

-— Status: It is

-~ Support files:

——— — —————————— e — ————— = - - —————— —————————

testbench.vhd

The following VHDL code provides a test bench
capability for testing the asynchronous moore
state machine.

complete and has been successfully simulated.
BASICDEFS.vhd (EIA's BASICDEFs package)

MOORE_pkg.vhd (State_machine packagae)
MOORE_pkg body.vhd (body of above)

-- Creation Date 11 July 90

-~ Created by:
- Address:

Rick Miller
AFIT/ENG
Wright-Patterson AFB, OH, 45433

- Phone: (513)-258-1024 or (513)-255-4960

use work.BASICDEFS.all;

use WORK.State_Machine_Package.all;
use STD.SIMULATOR_ STANDARD.all;

use STD.TEXTIO.all;

entity TEST_BENCH
end TEST_ BENCH;

is

architecture asynch_Moore_ example of TEST_ BENCH is

component state machine

port (

end component;

input_signals : in logic_vector mv (1 downto 0);
out_1,

out_2,

out_3 out logic mv;

RESET : in logic_mv
):

for all : state _machine use
entity WORK.state machine (asynch moore);

signal instruction : logic_vector _mv (1 downto 0) := "00";
signal CLOCK : logic_mv;
signal RESET : logic_mv;
signal MOORE_STATE : STATEs;
signal ouT_1,
ouT_2,
OUT_3 logic mv;

B.27

begin

RESET <= *1' , '0' after 5Sns;

process
file INSTRUCTIONS : TEXT is in "MOORE_INSTRUCTIONS“;
variable L : Line;

variable machine code : bit_vector (1 downto 0);

beagin

readline (INSTRUCTIONS, L):;
if ENDFILE (INSTRUCTIONS) then terminate;

read (L, machine_code);

case machine_code is

when "00" =>
when "01" =>
when "10" =>
when "11" =>
end case;
wait for 30ns;
ena process;

process
begin
set maximums (10000,100);
tracing_on;
wait for 200ns;
terminate;
end process;

make_Clock : process
begin
wait for 2ns;
CLOCK <= '1"';
wait for 4ns;
CLOCK <= '0';
wait for 2ns;
end process make_ Clock;

UUT : State_Machine

instruction
instruction
instruction
instruction

port map (instruction,
OouUT_1, OUT_2, OUT_3,

RESET
)

end asynch Moore_example;

B.28

= llOOll;

"o,
LANILI
LG LN

end if;

EEYSY ‘HO ‘day uosaaillzed-aybram -
ONd/LIdV:6689IPPY -
IDTTTH AOTY :AQ pajesad --

06 AIne T @3eQ UOTIBDID -~
QUON 18977173 3xoddng —-
‘po3jeTnurs uasaq sey pue 933T7dwod ST 3T :sN3IRIS —-—

a7dwexy 3100 snouocayoulse ay3lz -
I03 STTF Tox3uod 3rodax e sT B7TF DButMOoTTOoz 2yl :uotradraosag --

101°® THOOW oureu JTTH --

LAVYd L4VHd I4dV™Hd I4Y™¥d LAVYd L4VHd LdVvdd 0 LAV™Ed LdV™§a --

: abenbue7 TOx3U0D 33a10daYy

9v9€E8VLYTZ -B3TSA XeRW
LOBSLLYSBIEQZLEEZZE :dWTL XeW

3dxa1dwexa azoow youkse : o1Ttd Indano 3zodsy
101'® FHOOW :9TTd sbenbueT Toxjuo) 3xoday

€G:8G: €7 :dWTL uny
066T-80-90V :93eq Uny
T (IBFTIUIPI uny
€G:8G:EZ :dWTI uUOTIELIIDH TAUIY
0661-80-9NY :@23eQ UOTILdID TdUIBY
FTINVXE THOOW HONASV<<TYOOW HONASY' STTIWYXI ONINYOM HITIIWY>> :dueN AIexqrT Touiay
JYoI® 93100W YouAse :aureN 3Ixoday

3x0day uoTleTNWIS TPUA

JUoIe 8I0OW YyouAse
T 39v¥d I03eI8ULY 3310day TAHA 6G:¢G:€Z 0661-80-90¥Y

B.29

(uotr3ideEsURI] OU £33RDTPUT , ,) uor3loEsuea]l AG pPa3lxzodax a1 sanTea Teubrg
uoTleInurg 30 pud 031 SN O wox sT Ixodax 103 portaad awry
uoT3IBTNWIE JO 3IBIS a3yl O3 2ATIEPT3I SN UT €T BwTl

: uoTjeUIOjuIl 3IeWIOg 3Jaoday

{autyoepN 23®3S pPuUd

{AIYIS 3Judserd @ jun/ Teubls 3098136
{uoT3TEURII : Inn/ TeubTls 309786

{g ano : Teubrs 30379

{2 3ano : Teubts 30s79s

{1 3no : Teubts 3ooT9s

{uoTaonaisur : Teubis 3097198

{38891 : TeubTs 3097196

{su utr 3Julsad AQ sTrUubTS oTdwuE--

{su ut uotijoesueal Aq steubts erduwes

{Te3uozTIOY €T 3IJPWIO3 TeubTs

{0y sT y3ibuay obed

‘00T ST y3IpIm abed

{ayd1e 9I00W youdse, sT Lweu 3xodax
utbaq

ST aurtyoel o3e3s 1xodar uoTieTNWTS

096¥-G5G52-(€TG) IO $Z0T-852-(E£16G) $¥3uoyg --

WYo1e 8100l youAse
Z d9v¥4a x03eI3Uay 3x0day TAHA 65:8G:€Z 066T1-80-95NV

B.30

FLYLS QEIHL

qIVLS ANODES

AIVIS A¥IHL

FLYLS ANODES

FLYIS IS¥Id

dLVIS NMONNND

FIVLS INIST™UL

€ 39v¥d

NOILISNYHI ON

FLVIS QUIHL OLOO

NOILISNYYI ON

IIYLS ANODIS OIOO

NOILISNYHMI ON

JIVIS QIIHI OIO9

NOILISNVHYI ON

FLYLS ANODIS OLO9

NOILISNYMNI ON

JILVLIS LSUIJ OLOD
ALYVLS ISHYIJ OLOD
NOILISNYYI ON
NOILISNVMLI ON

NOILISNWIL

124
-x-
o

120
1 X
-D-

€ 100 Z 100

12
1 X
el

1 1no

ulla

uOTw

ulTu

uOTu

-o-

KHO' -H-
Eoo—- -D-

OINMOQ T)NOIIONYISNI JI13STY

S+
v+
£+
Z+
T+
0zt
S+
v+
£+
Z+
T+
06
S+
v+
£+
Z+
1+
09
S+
b+
£+
z+
T+
o€
T+

B.31

S+
b+
£+
c+
T+

(SN)

||||||||||||||||||||||||||||||||||||||| | AWIL

WYoae 2100 youkse
x03e3x3uU39 33x0dsy IAHA

6G:8G €T

0661-80-ONV

IL¥LS QNODIS

dIYIS 1S9Id

ILYIS ANODIS

FLYLS INISTHUL

NOILISNYYI ON

FIVIS ANODIS CLOO

NOIIISNYYLl ON

FILVIS ISHII OIOO

NOIZISNYYI ON

FLYLS ANOD3IS OLOD

NOILISNWHL

€ IN0 Z 100 T 1n0 (0 OINMOQG

wlTu

wul0u

™

T) NOIIOOMISNI 13SZ¥

G+
v+
€+
Z+
I+
otz
S+
v+
£+
Z+
1+
08T
S+
v+
£+
Z+
1+
06T

(SN}

...................................... STWYN TYNDIS-—=—m=mmm e m e e oo FWIL

b 3JOVvd

UD1® 93I00K youlse
x03eI8UadS 3I3x0dIdY TAHA

6G:85:€C

0661-80~90V¥

B.32

-- File name: CPU_Package.vhd

-- Description: State, Transition, Constant, and Function package
- for the 8 instruction CPU controller.

—-—- Status: Complete.

-- Support files: BASICDEFS.vhd (EIA's BASICDEF's package)
-—- Creation Date: 1 August 90

-- Created by: Rick Miller
- Address: AFIT/ENG
- Wright-Patterson AFB, OH, 45433

- Phone: (513)-258-1024 or (513)-255-4960

use WORK.BASICDEFS.all;
-- the EIA Standard package BASICDEFS

package CPU_Package is

type STATEs is
(

Unknown_State,
AC_gets_AC plus DR_State,
AC_gets_AC_and DR_State,
AC_gets NOT_AC_State,
READ M State,
WRITE_M State,
DR_gets_AC_State,
AC_gets DR _State,
AR gets DR _ADR State,
IR_gets DR OP_State,
AR_gets_PC_State,
RIGHT_SHIFT_AC_ State,
JUMP_State,
READ_INSTRUCTION State

Type Transition_Conditions is (
No_Transition,
goto_RESET,
goto_AC_gets DR,
goto_AC_gets_AC plus DR,

B.33

Type Transition_Conditions_vector is array (natural range <>) of

Transition_Conditions;

e s " "~ " ——————— - " ———— — _— = i T ————— - ———

Function Transition_Resolution (il

goto_AC_gets AC _and DR,
goto_IR gets DR OP,
goto_ AR _gets | DR ADR,
goto_AR_gets_| PC
goto_AC_gets_NOT_AC,
goto_RIGHT_SHIFT_AC,
goto_Write M,
goto_READ M,

goto DR_gets AC ’
goto_READ INSTRUCTION,
goto_JUMP

)

return Transition Conditions;

subtype logic_mv_bus is Wired Outputs logic_mv;
type logic_vector_mv_bus is array (natural range <>)

constant

constant

constant

constant

constant

constant

constant

constant

constant

constant

constant

constant

constant

constant

constant

co
c1
c2
c3
c4
CS
cé6
c1?
c8
C9 C3
C10
Cl1
c12
Uninit

zeroes

logic_mv_bus;
¢ logic_vector mv bus
:= "0000000000001";

: logic_vector_mv_bus (12 downto

1= "0000000000010";
logic_vector_mv bus
:= "0000000000100";

: logic_vector_mv_bus
¢= "0000000001000";

: logic_vector_mv_bus (12 downto

:= "0000000010000";

: logic_vector_mv _bus
:= "0000000100000";

: logic_vector_mv_bus
1= "0000001000000";

: logic_vector mv_bus
1= "0000010000000";

: logic_vector_mv_bus
:= "0000100000000";

: logic_vector_mv_bus
:= "0001000001000";

: logic_vector_mv_bus
1= "0010000000000™;
logic_vector_mv bus
:= "0100000000000";

: logic_vector_mv_bus
:= "1000000000000";

: logic_vector _mv_bus (12 downto 0)

:= "UUUUUUUUUUUUU";
logic_vector_mv_bus

B.34

(12 downto

(12 downto

(12 downto
(12 downto
(12 downto
(12 downto
(12 downto
(12 downto
(12 downto

(12 downto

Transition Conditions_vector)

(12 downto 0)

0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)

0

(12 downto 0)

HR B $10201010161010208€161620 Rl

Type instructions is
(
NOP,
LOAD,
STORE,
ADD,
BIT_AND,
JUMP,
JUMPZ,
coMmp,
RSHIFT
):

end CPU_Package;

B.35

package body CPU_Package is

- . —— ——— ————— ——— T — —— ———— " — — T — T —— - ——— ——= ——

. —— T —— - - T " —— —— T T~ —— — Y —— i —— - ——— T Y —— = o — T ————— —— ——— ——

Function Transition_Resolution (il : Transition Conditions_vector)
return Transition Conditions is

begin
for I in il'Range loop
RETURN il (I);
end loop;
RETURN No_Transition;
end;

end CPU_Package;

B.36

File name: cpu_controller.vhd

Description: Entity and Architecture for 8 instruction cpu
controller

Status: Complete.

Support files: BASICDEFS.vhd (EIA's BASICDEF's package)
Creation Date: 1 August 90
Created by: Rick Miller
Address: AFIT/ENG
Wright-Patterson AFB, OH, 45433

Phone: (513)-258-1024 or (513)-255-4960

use work.BASICDEFS.all;
use work.CPU_package.all;

entity CPU_CONTROLLER is

-- generic ();

port (instruction : in instructions := NOP ;
CLOCK i in logic_mv;
RESET : in logic_mv H
ZERO_FLAG ! in logic_mv;

Control_bus : out logic_vector _mv_bus (12 downto 0)
1= "XXXXXKXXKXKKXXXK"

architecture BEHAVIORAL of CPU_CONTROLLER is

signal Present_State,
Next_State : STATEs := Unknown_State;

signal Transition : Transition Resolution
Transition_Conditions
BUS
:= No Transition;

signal Control : logic_vecgor_mv_bus (12 downto 0)

HadliD 0.0.0.8.0.6.0.0.0,0.6.6 4L}

begin

control bus <= control;

CLOCK_SYNCH:process (clock) begin

if posedge(clock) then Present_State <= Next_State;

B.37

BUS

end if;
end process CLOCK_SYNCH;

RESET BLOCK : process (RESET) begin
if RESET = 'l' and RESET'event then
Transition <= goto_RESET;
else
Transition <= null;
end if;
end process RESET BLOCK;

process (Transition) begin
case Present_State is

when AR _gets_ PC_State =>
case Transition is
when goto RESET =>
Next State <= AR gets F State;
when others =>
Next State <= READ_INT.RUCTION_State;
end case;

when READ M State =>
case Transition is
when goto AC_gets_DR =>
NEXT_STATE <= AC_gets DR _State;

when goto AC_gets_AC plus_DR=>
NEXT_STATE <= AC_gets_AC plus DR_State;

when goto AC_gets_AC_and_DR=>
NEXT_STATE <= AC_gets AC_and DR_State;

when goto_ RESET =>
Next State <= AR gets_PC_State;

when others =>
end case;

when READ INSTRUCTION State =>
case Transition is
when goto_ IR gets DR OP =>
NEXT_STATE <= IR gets_DR _OP_State;

when goto_ RESET =>
Next State <= AR _gets PC_State;

when others =>
end case;

when IR gets DR _OP_State =>
case Transition is
when goto AR _gets DR ADR =>
NEXT STATE <= AR_gets_DR_ADR State;

B.38

when goto AR gets PC =>
NEZXT_STATE <= AR_gets PC_State;

when goto JUMP =>
NEXT STATE <= TUMP_State;

when goto AC_gets NOT_AC=>
NEXT_STATE <= AC_gets_NOT_AC_State;

when goto RIGHT_SHIFT AC=>
NEXT_STATE <= RIGHT_SHIFT AC_State;

when goto_ RESET =>
Next State <= AR gets PC_ State;
when others =>
end case;

when DR_gets_ AC_State =>
case Transition is
when goto Write M =>
NEXT_STATE <= WRITE_M State;

when goto RESET =>
Next State <= AR gets_PC_ State;

when others =>
end case;

when AC_gets DR_State =>
case Transition is

when goto AR _gets_PC | goto RESET =>

NEXT STATE <= AR_gets PC_State;

when others =>
end case;

when AR gets DR_ADR_ State =>
case Transition is
when goto READ M =>
NEXT_STATE <= READ_M State;
when goto DR_gets AC=>)
NEXT_STATE <= DR_gets_AC_State;

when goto_ RESET =>
Next State <= AR_gets_PC_State;

when others =>
end case;

when AC_gets_AC_plus DR_State =>
NEXT_STATE <= AR gets_PC_State;

when AC_gets_ AC_and DR State =>
NEXT STATE <= AR gets_PC_State;

B.39

when AC_gets_NOT_AC_State =>
NEXT_STATE <= AR gets PC_State;

when JUMP_State =>
NEXT_STATE <= AR gets PC_State;

when WRITE_M_ State =>
case Transition is
when goto_AR gets PC =>
NEXT _STATE <= AR gets PC_State;

when others =>
end case;

when RIGHT_SHIFT AC_State =>
NEXT_STATE <= AR _gets_PC_State;

when Unknown_State =>
case Transition is
when goto RESET =>
NEXT_STATE <= AR _gets PC_State;
when otherg =>
end case;

when others =>
end case;
end process;

—— i —————— e — —————— D W - " ——————— s — o —— T —————— i — — —— — —————— - —————

- The following processes are for the individual states of

-- the State Machine. These processes handle the output signal
-- assignments and determine the appropriate transition

-- condition in order to exit the state.

. — ———— — —— ——— ———— " o ———— 2 T T T WO e P — " ————— ——— - "

-— AR _gets PC state
AR gets PC: block (Present_State = AR_gets_PC_State) begin
process (GUARD) begin
if GUARD then
Control <= C10;
Transition <= goto_Read_Instruction;
else
Transition <= Null;
Control <= null;
end if;
end process;
end block AR _gets PC;

-- READ_M state
READ M: block (Present_ State = READ M State) begin
process (GUARD) begin
if GUARD then
Control <= C3;
else
Control <= null;
end if;

B.40

end process;

process (Clock)
variable clock _count : integer := 0;
begin
if GUARD and negedge(clock) then
clock_count := clock_count + 1;
if clock_count = 2 then
clock_count := 0;
case INSTRUCTION is
when LOAD =>
Transition <= goto_AC_gets_DR;

when ADD =>
Transition <= goto_AC gets AC_plus DR;

when BIT AND =>
Transition <= goto_AC_gets AC_and DR;
when others =>
end case;
end if;
else
Transition <= Null;
end if;
end process;
end block READ M;

-— READ INSTRUCTION state
-- This state not only reads the instruction from memory,
- but also increments the PC.
READ Instruction: block (Present_State = READ Instruction State) begin
process (GUARD) begin
if GUARD then
Control <= C9 C3;
else
Contrcul <= null;
end if;
end process;

process (Clock)
variable clock _count : integer := 0;
kegin
if GUARD and negedge(clock) then
clock_count := clock_count + 1;
if clock_count = 2 then
clock_count := 0;
Transition <= goto_ IR _gets DR_OP;
end if;
else
Transition <= Null;
end if;
end process;

end block READ_Instruction;

B.41

-- IR_gets_DR_OP_State state
IR_gets DR OP: block (Present_State = IR_gets DR OP_State) begin
process (GUARD) begin
if GUARD thea
control <= Cl1;

case INSTRUCTION is
when LOAD | STORE | ADD | BIT_AND =>
Transition <= goto_AR_gets DR _ADR;

when JUMPZ =>
if ZERO_FLAG ='0' then
Transition <= goto_JUMP;
else
Transition <= goto AR gets PC;
end if;

when JUMP =>
Transition <= goto_JUMP;

when COMP =>
Transition <= goto_AC gets NOT_AC;

when RSHIFT =>
Transition <= goto_RIGHT_SHIFT_ AC;
when others =>
end case;
else
Transition <= Null;
Control <= null;
end if;
end process;
end block IR gets_DR OP;

-—- DR _gets AC state
DR_gets_AC: block (Present State = DR_gets AC_State) begin
process (GUARD) begin
if GUARD then
Control <= C§5;
Transition <= goto WRITE_M;
else
Transition <= Null;
Control <= null;
end if;
end process;
end block DR_gets AC;

-— AC_gets DR state
AC_gets DP: block (Present State = AC_gets DR_State) begin
process (GUARD) begin
if GUARD then
Control <= C6;
Transition <= goto_AR_gets_ PC;
else
Transition <= Null;
Control <= null;

B.42

end if;
end process;
end block AC_gets DR;

—-— AR gets DR _ADR state
AR _gets DR_ADR: block (Present_State = AR _gets_DR _ADR State) begin
process (GUARD) begin
if GUARD then
Control <= C7;
case INSTRUCTION is
when LOAD | BIT AND | ADD =>
Transition <= goto READ M;

when STORE =>
Trangition <= goto_DR _gets AC;

when others =>
end case,
else
Transition <= Null;
Control <= null;
end if;
end process;
end block AR_gets DR_ADR;

-—- AC_gets_AC _plus DR state
AC_gets_AC_plus_DR: block (Present_State = AC_gets_AC plus_DR_State)
beqgin
process (GUARD) begin
if GUARD then
Control <= CO;
Transition <= goto AR gets PC;

else
Transition <= Null;
Control <= null;
end if;

end process;
end block AC_gets AC_plus_DR;

-- AC_gets_AC_and DR state
AC_gets_AC_and_DR: block (Present_State = AC_gets_AC_and DR _State) begin
process (GUARD) begin
if GUARD then
Control <= Cl;
Transition <= goto_ AR gets PC;
else
Transition <= Null;
Control <= null;
end if;
end process;
end block AC_gets AC_and_DR;

-- AC_gets NOT_AC state
AC_gets_NOT_AC: block (Present_State = AC_gets NOT AC State) begin
process (GUARD) begin
if GUARD then

B.43

Control <= C2;
Transition <= goto_AR gets PC;
else
Transition <= Null;
Control <= null;
end if;
end process;
end block AC_gets_NOT_AC;

-—- JUMP and JUMPZ state
PC_gets DR_ADR: block (Present State = JUMP_ State) begin
process (GUARD) begin
if GUARD then
Control <= C8;
Transition <= goto_AR_gets PC;

else
Transition <= Null;
Control <= null;
end if;
end process;
end block PC_gets DR _ADR;

-- WRITE_M state
WRITE M: block (Present_State = WRITE M State) begin
process (GUARD) begin
if GUARD then
Control <= C4;
else
Control <= null;
end if;
end process;

process (clock)
variable clock count : integer := 0;
begin
if GUARD and negedge(clock)} then
clock_count := clock_count + 1;
if clock_count = 2 then
clock_count := 0;
Transition <= goto_AR_gets PC;
end i .;
else
Transition <= null;
end if;
end process;
end block WRITE M;

-~ RIGHT_SHIFT_AC state
RIGHT_SHIFT_AC: block (Present_State = RIGHT SHIFT_ AC_State) begin
process (GUARD) begin
if GUARD then
Centrol <= C12;
Transition <= goto_ AR gets PC;

B.44

else
Transition <= Null;
Control <= null;
end if;
end process;
end block RIGHT_SHIFT_AC ;

end BEHAVIORAL;

B.45

-~ File name: testbench.vhd

-- Description: testbench for 8 instruction cpu
- controller

-- Status: Complete,

-- Support files: BASICDEFS.vhd (EIA's BASICDEF's package)
- cpu.vhd

~-- Creation Date: 1 August 90

-- Created by: Rick Miller

-- Address: AFIT/ENG

- Wright-Patterson AFB, OH, 45433

- Phone: (513)-258-1024 or (513)-255-4960

use work.BASICDEFS.all;

use work.CPU_package.all;

use STD.SIMULATOR_STANDARD.all;
use STD.TEXTIO.all;

entity TEST_BENCH is
end TEST_BENCH;
architecture CPU_588 of TEST BENCH is

component CPU_CONTROLLER
-- generic ();

port (instruction : in instructions := NOP ;
CLOCK : in logic_mv;
RESET : in logic_mv ;
ZERO_FLAG : in logic_mv;
Control bus : out logic_vector_mv_bus (17 downto 0)

T 0.0.9.0:0/0/0 09,0004
)

end component;

for all : CPU_CONTROLLER use entity WORK.CPU_CONTROLLER (BEHAVIORAL) ;

signal instruction : instructions := NOP;

signal RESET : logic_mv = 'X';

signal CLOCK : logic_mv = 'X';

signal zero_flag : logic_mv = 'X';

signal control line : logic_vector_mv_bus (12 downto 0)

L D 0.0.0.0.0.0.0.9.0.6.060 L

begin

B.46

process
file CPU_INSTRUCTIONS : TEXT is in "CPU_INSTRUCTIONS“;
variable L : Line;

variable machine code : bit_vector (4 downto 0);
alias machine_instruction : bit_vector (2 downto 0)
is machine_code (2 downto 0);
begin

readline (CPU_INSTRUCTIONS, L):
if ENDFILE (CPU_INSTRUCTIONS) then terminate; end if;
read (L, machine code);

case machine code(4) is
when '0' => ZERO_FLAG <= '0Q°';
when 1" => ZERO_FLAG <= '17;
end case;

case machine code(3) is
when '0' => RESET <= '0°';
when '1l' => RESET <= '1};
end case;

wait until control line = C9 _C3; -~ This indicates that
-- CPU_Controller has issued
-—- a read memory command
-~ during the READ INSTRUCTION
-- state.

case machine_instruction is
when "(000" => instruction <= LOAD;
when "001"™ => instruction <= STORE;
when "010" => instruction <= ADD;
when "01l1" => instruction <= BIT AND;
when "100" => instruction <= JUMP;
when "101"™ => instruction <= JUMPZ;
when *"110" => instruction <= COMP;
when "111" => instruction <= RSHIFT;

end case;

end process;

process
begin
set_maximums (10000, 100);
tracing_on;
wait for 1000ns;
terminate;
end process;

make Clock : process
begin
wait for 2ns;
CLOCK <= 'Q°';
wait for 4ns;
CLOCK <= '1"',;
wait for 2ns;

8.47

the

end process make_Clock;

uuT CPU_CONTROLLER

port map (instruction,
CLOCK,
RESET,
ZERO_FLAG,
Control line);

’

end CPU_588;

B.48

1 dovd

_ {885 NdAd pud

f93e3g UaERId IAN/ TeubTs 309136
{9uUTY TOI3U0) @ Teubis 3daTes
{uor3iTsuexy :ann/ TeubTs J0STIE--
!beT3 ox9z :3jnn/ Teubis 309796
{39831 :3nn/ Teubre 309786
{uoT30NI38UT : TRubIE 3IDBT8E

{ooT) : Teubis 3o9T9E

{su utr 3uaas Aq syTeubrs srdures--

!su ut uortjoesueryl Aq sTeubis ardures

!{Tejuoztaoy €Y 3ewIoy Teubrs
{0y T y3jbuay abed

{001 ST y3Iptm ebed

488G NdD. ST sureu 3xodax
utbaqg

€T 885 Ndo 3r10odaa uoTrjernurg

: abenbueq TOoxjUO) 3IAxoday

9v9EBYLYTZ :®IT3A ¥eW
LOBSLLVYSBIEOZLEETZH :dBUTL XeW

3da-gggs ndo : o114 Indino 3xoday
T0x1°'Ndd :°7Td sbenbue TOxjUO)D 3Iaodsy

GZ:8C:1T1 :2wTL uny
0661-90-50¥ :®3eQq uny
1 1I33T3IUSPI uny
GZ:8Z:TT :IBWIL UOTIBIID TIUIdDY
066T-90~-9NY :33eQ@ UOTIEII) [3UIIY
885 NdO<<88S NAD WATIIWY>> :oweN AIeiqi1 TouIady
w886 Ndo :aweN 3xoday

3xodsy uvorlRTNWIS TPUA

w885 Ndo
z03ex3uady 33xoday TAHA T0:LEOT 066T-80-9NV¥

B.49

Z dovd

(uot3oesuexrl ou §ajzedTPUT , ,) UoT3Ioesueal AQqQ palxodax oxe santea Teubrg
UOTIBTNWTIS JFO pux O3 SN (0 woay st 3xodex 103 potraad swry
UOT3IETNWTE JO 3ITILIE aYl3 O BATIRTII SN Ul €T JwWT]

P uoTjIPUIIOJUl Jewaog 3x0day

«88G Nad
z03RI13U8H 3Ix0d3aY TAHA T0:LE:0T 0661-80-90Y

B.50

FIVIS 40 ¥d SIED ¥uI

FILVIS NOILIDNWISNI avdd

FLYIS NOILONMISNI qvad

ILYIS Od SIAD ¥Y

ALVLS NMONMNA

AIVLS INISTHA

£ d9vd

«00000000000T0u

w000T00000T000u

u0000000000T00w

w22222272222222.
M XXXX XXX XXKXAKXX
u XXXXXXXXXXXXX o

(0 OLNMOQ ZT)3ANIT TOMINOD SYTIJd OMIZ IISIM NOILONYISNI MOOTO

w885 Ndd
x03eI3u9n 310day TAHA

-o-
.x-

1 Ta

104
1 X

avo'l

dON

1 X

(SN)

||||||||||| STWYN TUNOIS == ——— == m oo e GWIL

T0-LE:O0T 066T-80-O0V

B.51

«000T00000T000u v+
Z+
T+
8L
T+
ve
v+
z+
T+
oL
T+
99
v+
Z+
T+
Z9
T+
8S
z+
1+
14
I+
0s
v+
z+
T+
9V
T+
4
v+
z+
1+

IILVLS NOILONYISNI avad

— - _ «0000000000T004u
JIVLS Od SId9 ¥¥

- — - 4«000000T000000.
JIVIS ¥Q S13I95 OVY

ILYLS W avdy

o u000T000000000u
dLVLIS W avay

— - - _ w0000000100000«
IILYLS ddY¥ ¥G SId9 ¥V
+ T

ALVYLIS INASHYd (0 OINMOQ ZT)3ANIT TOMINOD OYWIJd OMIZ I1ISTd NOIIDNHISNI MDOTD (SN)

|||||||||||||||||||||||||||||||||||||| STWIN TUNIIS-—-—--m——mmmmmmmme e e | GKWIL

885 0ad
v A9vda I038319uUd9H JI0ddY TAHA T0:LE:OT 0661-80-ON¥

B.52

-c—
FIVIS W avay
-ﬁ-
-o-
o w000T000000000m
FILVIS W avad
-ﬁ—
-o-
L _ w0000000T000004
AILVIS ¥a¥ ¥d SII9 ¥y
-.ﬂ-
-o-
L 400000000000T0u
FLYIS 40 ¥d SI3AD ¥I
1 T
-o-
JIVIS NOILONYISNI gvay
-ﬁ-
-o-
avont
FLYLS INISTUL (0 OINMOQ ZT)ANIT TTONMINOD OYWId O¥IZ IISIM NOILONMWISNI NOOTO

«885 0Ndd
S dovd x03ea3udn 3x0day TAHA

9zt
T+
[AA
Z+
T+
81T
1+
vIT
v+
Z+
T+
0Tt
T+
901
v+
Z+
T+
20T
T+
86
b+
+
I+
v6
T+
06
Z+
T+
98
T+
c8
S+

(sN)

IWIL

T0:LE-0T 0661-80-90V¥

B.53

FLVYIS WAV ¥d SId9 d¥¥

AIVIS 4O ¥d SII9 9T

FLYIS NOILONYISNI Qudd

YIYIS NOIIONYISNI avad

FIVLIS Od SId9 ¥V

FIVIS ¥d S13ID OV

AIVILS LNISHEA

9 Jo¥d

«00000000000T0u

IJOLS

«000T00000T000

u0000000000100u

«000000T000000u

-H-

(0 OLNMOQ ZT)INIT TOYINOD SVTIJd OMIZ IISTY NOIIDNNISNI MDOTO

w885 Ndo
x03ex3udn 3Ixoday TAHA

Z+
T+
99T
T+
291
v+
z+
1+
8ST
T+
bST
z+
T+
0ST
T+
vt
S+
v+
Z+
T+
vl
1+
8ET
v+
4+
T+
PET
T+
0ET
v+
Z+
T+

(SN)

AWIL

TO:LE:0T 066T1-80-90nVY

B.54

FLYLS NOILONMISNI avdy

4IVIS Od SIdD u¥

FIVIS W FLIUM

4IYIS W FLI¥M

dLYIS O¥ SIFD ¥a

ALVIS INISIUA

L IOVa

u000T00000T000u

x0000000000T00 .

u00001000000004u

«00000T00000004

«0000000T000004

(0 OINMOQ ZT)3ANIT TOMINOD SVIJd ONEZ IASTY NOIILOAYISNI MO0TD

w886 NdD
103RI3U39 310daYy "TQHA

aav

1 T

012e
S+
v+
2+
T+
90¢
T+
(4014
v+
z+
T+
86T
T+
v61
z+
1+
06T
T+
981
v+
z+
T+
Z8T
1+
8LT
b+
z+
T+
LT
T+
oLt
v+

(SN)

JWIL

T0:LE0T 0661~-80~-D0¥Y

B.55

FLYIS ¥d SNT1d OV S139 OV

qIYLIS W avay

FLYIS W avay

JIVIS ¥AY d4d S139 ¥VY

qI¥IS 40 ¥d SIEO ¥l

FIVIS NOIIDNMISNI avayd

4IVYIS LNISTAJ

g8 ddwd

«000T0000000004

«0000000T00000u

u00000000000T0x

10

(0 OINMOQ ZT)ANIT TOYINOD O¥IJ O¥dZ LISTY NOILONMISNI MDOTO

w885 0dD
I03RI3U8YH ITOCIY TAHA

Z+
1+
yse
1+
0682
Z+
T+
9vZ
T+
cve
v+
Z+
T+
8EZ
T+
vee
v+
2+
1+
o€z
I+
922
v+
Z+
T+
(444
1+
812
Z+
1+
v12z
1+

(SN)

JWRIL

TO:LE-OT 0661-80-50Y

B.56

FIYIS ¥A¥ ¥d SIAD ¥y

ALYLIS 40 ¥d SIdD ¥I

FIYLS NOILONYISNI Aavdd

FLYIS NOILOMYISNI avdd

IILYIS Od SII9 ¥u¥

4IVYIS INISTIS

6 IOVd

«0000000T00000u

«00000000000T0u

«000TQ0000TO00M

«0000000000T00wu

«T000000000000w

(0 OINMOQ ZT)ENIT TOMINOD SVId O¥EZ LIISTY NOILINYISNI MOOTD

w885 NdD
I03RI8USY 3J10dad TAHA

aNy LI

10

862
v+
z+

v62
1+
062
v+
2+
T+
982
T+
Z28¢
2+
T+
8LZ
1+
L2
S+
v+
Z+
T+
oLz
1+
99¢
v+
Z+
1+
292
T+
862
v+

(sN)

IWIL

T0:LE:0T 0661-80-D0V

B.57

Zve
T+
8EE
G+
v+
z+
T+
vee
T+
oce
v+
Z+
T+
9zZ¢
T+
1443
v+
<+
T+
81E
T+
vie
Z+
i+
01¢
1+
90¢€
v+
Z+
T+
Zce
1+

_ _ «000T000001000u
ALYLS NOILONYLSNI avad

- - - «0000000000T00u
qLYLS Od S1ID ¥vY

1 T
104
w0T000000000004

ALYIS ¥d ANY O¥ SIFS OV
‘T

FIVLS W aYds

L 4000T000000000u
JLYLS W avad
-.H-

-o.

FIVIS INISAUA (0 OLNMOQ ZT)3ANIT TOYINOD OVTd ONEZ IASTH NOILIDNWISNI MDOTO (SN)

—_——— e e e e e e e e e e - o —— e — e e

..... e e e e e e e = SAWYN TYUND IS = m == e e e eeee | THIL

w885 Ndd
01 dovd I03R1I9UadH Ix0dad TUHA T0:LE:0T 066T-80-90VY

B.58

FLYIS NOIIDAMISNI avad

dIVLIS NOILONWISNI avad

FILYIS Od SIED uvY

FLYIS JWAL

FIVLS 40 ¥d SIdD ¥uI

dIVIS NOILONYISNI Qvdy

FLYLIS INISTHI

11T 3o¥d

w000T00000T000u

«0000000000T00w

u00000000T0000u

«00000000000T0u

(0 OILNMOQ ZT)ANIT TOMINOD SYW1d OHEZ IASTY NOIIDNWISNI MOO0TD

w885 Ndd
103eauadn 3xoday TAHA

2dnrne

-H-

10,

-.H-

10

1 Ta

+
T+
(423
T+
8LE
S+
v+
z+
T+
vLe
T+
oLe
v+
[4s
T+
99¢
T+
z9¢
v+
z+
T+
8S¢t
T+
1213
v+
Z+
T+
0SE
i+
9ve
Z+
T+

(SN)

INIL

T0:LE:0T 0661-80-D0¥

B.59

T+
9zv
z+
T+
XA 4
T+
81V
G+
v+
Z+
I+
viv
T+
oty
v+
z+
1+
1004
T+
oy
v+
z+
T+
86€
T+
vet
v+
A
T+
06¢
T+
98¢

4IYLIS NOILONMISNI avad

dROD

_ _ »000T00000T000N
dILVLIS NOILOMALSNI avdd

- — _ «0000000000T00x
JIL¥LS 04 S1d9 ¥v¥

— « 0000000010000
dLYLS JuAL
-o-
- - _ u00000000000T0u
JI¥YLS 4O ¥d S199 ¥I
1 Ta

-o-

FLVYLS INIST™I (0 OILNMOQ ZT)ZNIT TOYINOD SYWTd OWEZ IFSTY NOIIDNMISNI NDOTD (SN)

-
o
-

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu STWYN TUNDIS——— = mmmmmm e e e e e | IWIL

«886 Nad
2T 3Iovd z03e13udn 3Ixodayd TAHA T0:LE:0T 066T-80-ONV¥

B.60

AIVLS NOILONYISNI avay

ALYIS NOIIONYISNI avdy

qIVIS O0d SIAD ¥y

ALYIS O¥ ION SIED O¥

AIYIS 40 ¥d SId9 ¥I

FIVIS LNISTIA

u000TQ0000T000.

«0000000000T00u

«00T0000000000u

«00000000000T0u

w885 NdD
J03eIx3uads 3xoday "TAHA

-H-

(0 OLNMOAQ ZT)3ANIT TOMINOD OWId OHAZ IIASTY NOIIONMISNI MDOTD

T+
oLy
T+
99Yv
2+
1+
Z9v
1+
12370 4
S+
v+
Z+
1+
1234
1+
osy
v+
Z+
1+
Sbv
1+
(A4
v+
c+
1+
8EY
1+
VEY
v+
z+
1+
(1134

(SN)

JNIL

TO:LE:OT 0661-80-90VY

B.61

FIVIS d0 ¥d SIFD ¥I

FIVIS NOIIONEISNI dvay

FIVIS NOILONYISNI avad

ALYIS Od SIED ¥Y

AIYLS OV IJIHS IHOIY

AIVIS 40 ¥d SIFD ¥uI

4IVLS INISTId

vT Jovd

«00000000000T0u

«000T00000T000u

u0000000000T00.

«000000000000Twu

x00000000000T0x

(0 OINMOQ ZT)EINIT TOMINOD OVId O¥AZ IISTM NOILONYISNI MOOTD

u88S Ndd
x03eI9uUadn 330ddW TAHA

(0005 §

-H-

-o-

-H.

104

-H-

1 Ta

.o-

v+
Z+
T+
01s
1+
906
Z+
T+
208
T+
86V
S+
v+
Z+
1+
vev
I+
o6V
v+
2+
T+
98%
1+
28y
v+
Z+
I+
8LY
T+
YLy
v+
Z+

(sN)

JAIL

T0:LE:O0T 0661-80-D0V

B.62

ALYLS Od SI99 ¥Y

FIVLS ¥ad SI99 OV

FIVIS W aydy

FLYIS W a¥ay

FIVIS ¥a¥ ¥d SIAD ¥y

ALYIS INISTHA

ST 35v¥d

«0000000000T00.

«00000070000004

u000T0000000004

«0000000T000004u

«88G NdD
I03RI8UIYH 3Jx0dad TAHA

.o-

-H-

-O—

854
1+
bGs
v+
Z+
1+
08s
T+
9rs
v+
Z+
T+
Zvs
T+
8ES
Z+
1+
1A%
T+
0EsS
v+
c+
I+
92s
T+
(44}
b+
Z+
1+
816
1+
1A%

B.63

(SN)

dHWIL

TO:LE:OT 0661-80-O0V¥

FIVIS W JILI¥M z+
T+
868G
T+
v6S
v+
Z+
T+
06S
T+
98SG
v+
Z+
T+
Z28%
T+
8LS
v+
Z+
T+
VLS
T+
0LS
Z+
T+
996G
T+
298§
S+
v+
Z+
T+

- - _ «00000T00000004u
dLVLS OV SLID dd

- _ _ _ »w0000000T00000u
JILYILS ¥4ad¥Y ¥d SI39 ¥v
1 T

-o-

— - u00000000000T0wu
dIVIS 4O ¥d S1d9 ¥I

JLYIS NOILONYISNI avdd

THOLS

N _ w000T00000T000.
JIVYLS NOILONYISNI avid

'+ T

41VIS INISTAd (0 OINMOQ ZT)INIT TOMINOD SVIJd OWIZ LISTY NOIIDNWISNI MDOTO (SN)

......... e e e e STWYN TYNDIS—— === ———— == mmmme e e emeeee | FHIL

w88S Nad
91 I9vd x03e3x3U3n 310daY TAHA TO:LEOT 066T-80-90V

B.64

ALVYIS 40 ¥d SIED ™I

FIVLS NOILONYISNI Qyad

AIVIS NOILONMISNI avad

4IY¥IS 0d SIF9 ¥¥

JIVIS W d1IuM

ILVIS INIASTUL

LT ¥9O¥4a

«00000000000T0wu

aavy
«000T00000T000u

«0000000000T00

«0000T00000000w

(0 OILNMOQ ZT)EANIT TOMINOD SVIJ O¥IZ LEISTY NOILONMISNI MDOTO

«88S NdD
103RI’U3Y 3x0dadY TAHA

-O-

T+
Zv9
v+
Z+
T+
8¢9
T+
veo
¢+
T+
0€9
1+
929
S+
v+
Z+
T+
(44
1+
819
v+
Z+
T+
V19
T+
019
Z+
T+
909
1+
209
v+

(SN)

IWIL

TO:LEOT 066T-80-ONVY

B.65

FIVIS NOILIONMISNI gy¥yad Z+
T+
989
T+
z89
v+
z+
T+
8L9
T+
vL9
v+
zZ+
T+
0L9
T+
999

!

-.H- _
I
[
[
|
|
!
I
_
!
i
_
[
_
|

i [
FIVIS W aVvdy | ze
[

_

{

J

[

[

[

[

_

I

!

I

I

I

!

I

_

-o-

- = —_ «u0000000000100u
ALYLS 04 SIIAD ¥Y
-H-

10

- = - - _ «T0000000000004
dLYLS ¥ad SNId OV SidO IOV
-H-

1+
299
T+
859
v+
A
T+
vs9
1+
0s9
v+
z+
T+
9v9

— u000T000000000u
ALYLS W qY¥ad

—_ - - «0000000T00000u
JILVLS dav ¥d SLIdD ¥¥
.H-

4LYIS INISTEJ (0 OINMOQ ZT)ENIT TOMINOD OVIA OMEZ IISTM NOIIOMMISNI NDOTO (SN)
|||||||||||||||||||||||||||||||||||||| STWYN TYUNDIS---wm—-mmmememmecmcccc e e e e memmeen | TWIL

w885 Ndd
8T IOVd 103e39U8H 3I0d3Y TAHA I0:LE:0T 0661~80-9nNV

B.66

0€EL
Z+
T+
9ZL
T+
2L
ozL
v+
2+
T+
81L
1+
viL
v+
Z+
i+
0TL
T+
90¢L
v+
c+
I+
20L
i+
869
Z+
I+
v69
T+
069
S+
v+

FIVLS W avad
—.ﬂ-

100

_ u000T000000000u
JIVILIS W aqVad

_ - - - u0000000T00000u
JLVYLS ¥aY¥ ¥d SI1d9 ¥vY
+ T
N

- - - - «00000000000T0u
dI¥LS dO0 ¥Qq SId9D duI

FLVIS NOIIDNYISNI Qyvdy

aNy 1Id
«000T00000T000

FIVIS INISTYI (0 OILNMOQ ZT)3ANIT TOMINOD OWId O¥AZ IASTY NOILOAMISNI MDOTD (SN)

|||||||||||||||||||||||||||||||||||||| STWYN TYNDIS===mmmmm oo | @WIL

«885 Ndd
6T IOV4d I03ea8Udn 3x0day TAHA TO0:LEQT 0661-80-90VY

B.67

o _ w00000000000T0u
IIVLS dO ¥d SIED ¥I
FIYIS NOILONYISNI avad
B B w000T00000T000u
HALYIS NOILODNYWISNI avdyd
o B w0000000000T00w
FIVLS Od SIFD ¥V
o B «0T00000000000u
AIVIS ¥d ANY OV SI3ED OV
IIVLIS INISTHI (0 OINMOQ ZT)3ANIT TOMINOD 9

w885 NdO
0Z 3ov4d I03eI9U9d9 3Jxoday TAHA

104

.O-

WId OddZ IASTY NOILINYISNI XNDOTD

bLL
T+
oLL
v+
Z+
1+
99L
T+
Z9L
Z+
T+
8SL
T+
LATA
S+
v+
Z+
T+
0SL
1+
9vL
v+
Z+
I+
ZviL
T+
8EL
v+
Z+
T+
vEL
T+

(sN)

INIL

T0:LE:0T 0661-80-9NV

B.68

ALYIS Od SIED ¥Y

JIL¥IS 40 ¥d SIED ¥I

FIVLS NOILONYISNI avdy

AIYLS NOILONJISNI avad

FIVIS Od S1ED Y

qLYIS dWNL

FIYIS INISTHEd

12 3dovd

«00000000000T0u

u000T00000T000u

«0000000000T00.

«00000000T0000u

(0 OINMOQ ZT)IANIT TOMINOD SVIJ OMIZ LIST NOIIDNMISNI MDOTD

«88S Ndd
Io3easuan 3Ixzoday TAHA

Zdnuae

-H.

Z+
T+
vis
T+
018
v+
7+
1+
908
T+
z08
z+
1+
86L
1+
v6L
S+
v+
Z+
T+
06L
1+
98L
v+
Z+
T+
Z8L
1+
8LL
v+
Z+
T+

(SN)

JRIL

TOLEZOT 0661-80-950¥

B.69

_ _ w000T00000TO000u | v+
FIYIS NOILONMISNI QudEy | Z+
e T | T+
(A4
104 | T+
| 818
w0000000000T00u H v+
|
FLYLS INISTYS (0 OINMOQ ZT)ANIT TOMINOCD O¥Id OdIZ IISTY NOILDNWISNI NOOTD I (SN)
|
|||||||||||||||||||||||||||||||||||||| STWYN TUNDIS-mmmmmmmm e e e e s mcc e cc e e | THIL
w885 NdO

Z2Z dovd 103e313us9 3x0day IAHA TO:LE-O0T 0661-80-D50V¥

B.70

Appendix C: The Structural Model.

This appendix contains a complete listing of all logic gates and flip-flops defined for use
within a sequential circuit's architecture. Additionally, another example structural architecture of a

sequence detector is included. The logic gates and flip-flops are:

1. ANDm A multiple input AND gate.

2. NANDm A multiple input NAND gate.

3. ORm A multiple input OR gate.

4. NORm A muitiple input NOR gate.

5. INVERTER a single input, single output inverter.

6. O_ff A clocked D flip-flop with set and clear, and,

7. D_ft no_clk An asynchronous D flip-flop with set and clear.

They may be found on the following pages:

Device Page
1. ANDm c.2
2. NANDm c.2
3. ORm c.3
4. NORm c3
5. INVERTER C4
6. D_ff C5
7. D_# no_clk C.6
8. Sequence Detector c7

CA1

use work.BASICDEFS.all;
entity ANDm is

generic(
propagation delay : time := 0 ns
)
port (Inl : in logic_vector _mv ;
outl : out logic mv := 'U’
);
end ANDm;

architecture BEHAVIORAL of ANDm is
begin

outl <= and bw(Inl) after propagation_delay;

end BEHAVIORAL;

use work.BASICDEFS.all;
entity NANDm is

generic (
propagation delay : time := 0 ns
)
port (Inl ¢ in logic_vector mv;
outl : out logic_mv := 'U’'
)
end NANDm;

architecture BEHAVIORAL of NANDm is
begin

outl <= nand_bw(Inl) after propagation_delay;

end BEHAVIORAL;

c.2

use work.BASICDEFS.all;
entity ORm is
generic(
propagation delay : time := 0 ns
)
port (Inl : in logic_vector mv ;
outl : out logic_mv := 'U!
)
end ORm;

architecture BEHAVIORAL of ORm is
begin

outl <= or bw(Inl) after propagation_delay;

end BEHAVIORAL;

use work.BASICDEFS.all;
entity NORm is
generic (
propagation delay : time := 0 ns
)
port (Inl : in logic_vector mv ;
outl : out logic_mv := 'U’
)i
end NORm;

architecture BEHAVIORAL of NORm is
begin

outl <= nor_bw(Inl) after propagation_delay;

end BEHAVIORAL;

C.3

- — i ——— = " - ————— ——— ———— i —— " = ————————

use work.BASICDEFS.all;
entity inverter is
generic (
propagation_delay : time := 0 ns
)
port
inl : in logic mv := 'U';
outl : out logic_mv := 'U’
)i

end inverter;

architecture behavioral of inverter is
begin

outl <= not inl after propagation_delay;

end behavioral;

C4

- D flip-flop with clock, set, and clear

use work.BASICDEFS.all;
entity D _ff is

generic (propagation_delay : time := 0 ns);
port
D _in : in logic_mv = 'U’;
Q_out : out logic_mv = 'y
CLK : in logic_mv = U
Clear : in logic mv = 'U';
SET : in logic_mv HE R O
)
end D_ff;

architecture BEHAVIORAL of D_ff is
begin
process (CLK)
begin
if (CLK'event and CLK = '1') then

if ((Clear = '1') and (SET = '1')) then
Q out <= 'U' after propagation_delay; end if;

if ({(Clear = '0') and (SET = 'l')) then
Q out <= 'l1l' after propagation_delay ; end if;

if ((Clear = '1') and (SET = '0')) then
Q out <= '0' after propagation_delay; end if;

if ((Clear = '0') and (SET = '0')) then
Q out <= D_in after propagation_delay; end if;

end if;
end process;

end BEHAVIORAL;

C5

use work.BASICDEFS.all;
entity D_ff no clk is

generic (propagation_delay ¢ time := 0 ns);
port (

D_in : in logic_mv = 'Y

Q out : out logic_mv = '07;

Clear : in logic_mv = 'Y’

SET : in logic_mv =y

)
end D_ff no_clk;

architecture BEHAVIORAL of D_ff no_clk is

begin
process (Clear, SET, D_in)
begin
if ((Clear = 'l') and (SET = '1')) then
Q out <= 'U' after propagation_delay; end if;
if ((Clear = '0') and (SET = '1')) then

Q out <= 'l' after propagation_delay ; end if;

if ((Clear = '1') and (SET = '0')) then
Q out <= '0' after propagation_delay; end if;

if ((Clear = '0') and (SET = '0')) then
Q out <= D in after propagation_delay; end if;

end process;

end BEHAVIORAL;

C.6

. o s e " ——————— — ———— > 2" " " . ———— T —_———————— = ———— . ——_— —

T —————— — —————— —————— T — e " " ————————————— ——— —————— —— — i ——

use WORK.basicdefs.all;

entity Sequence_Detector is
-- generic ();

port (
Xin : in logic_mv = 17
CLOCK : in logic mv = 'U';
Zout : out logic_mv = 'U';

SET ¢ in logic_mv = 'Ut;
CLEAR : in logic_mv 'u!
)i

end Sequence_ Detector;

architecture STRUCTURAL2 of Sequence Detector is

component inverter
generic(propagation_delay : time := 0 ns);
port
inl
outl
)
end component;

in logic_mv = 'u';
out logic mv = 'y’

for all : inverter use
entity WORK.inverter (BEHAVIORAL) ;

component NANDm
generic(propagation_delay : time := 0 ns);
port(Inl : in logic vector mv;
outl : out logic_mv := 'U’
):
end ~omponent;

for all : NANDm use
entity WORK.NANDm (BEHAVIORAL) ;

component D_f£f

generic (propagation_delay : time := 0 ns);
port
D_in ¢ in logic_mv = 'UY;
Q out : out logic_mv = 'U';
CLK : in logic_mv = 'y
Clear : in logic_mv = 'U*;
SET ! in logic_mv R A

)
end component;

for all : d_ff use
entity WORK.D_ ff (BEHAVIORAL);

c7

--- Internal Signal Declarations

signal Y1,
Y2,
Q1,
Q2 : logic mv := 'U’;

signal Xnot,
Qlnot,
Q2not,
NAND1 output,
NAND2 output,
NAND3 output,
NAND4 output : logic_mv := 'U';

signal NAND1l input,
NAND2 input,
NAND3_ input,
CR1_input : logic_vector mv (1 downto 0) := "UU";

signal NAND4 input : logic_vector mv (2 downto 0) := "UUU";

begin
invl : inverter
oort map (Xin, Xnot);
inv2 : inverter
port map (Q2, Q2not);
inv3 : inverter

port map (Ql, Qlnot);
--~ Logic to derive Y1:
NAND1 input <= Q1 & Q2not;

NAND1 : NANDm
port map (NAND1l input, NAND1l output);

NAND2 input <= Xnot & NAND1l output;

NANDZ2 : NANDm
port map (NAND2 input, Y1);

--- LOGIC to derive Y2
NAND3 input <= Xnot & Ql;

NAND3 : NANDm
port map (NAND3 input, NAND3 output);

inv4d : inverter
port map (NAND3 output, Y2);

--~- LOGIC to derive Zout

cs8

NAND4 input <= Xin & Qlnot & Q2;

NAND4 : NANDm
port map (NAND4_input, NAND4 output);

invS : inverter
port map (NAND4 output , Zout);

-~~~ Registers

FF1 : D_ff
port map (Y1, Ql1, CLOCK, CLEAR, SET);

FF2 : D_ff
port map (Y2, Q2, CLOCK, CLEAR, SET);

end STRUCTURALZ;

AUG-01-1990 10:09:43 VHDL Report Generator PAGE 1
TEST GATE"

Vhdl Simulation Report

Report Name: TEST_GATE"
Kernel Library Name: <<RMILLER.STRUCTURAL>>SD TEST
Kernel Creation Date: AUG-01-1990
Kernel Creation Time: 10:09:35
Run Identifer: 1
Run Date: AUG-01-1990
Run Time: 10:09:35

Report Control Language Flle: test.rcl
Report Output File : sd test.rpt

Max Time: 9223372036854775807
Max Delta: 2147483646

Report Control Language :

Simulation report TEST is
begin

report_name is "TEST GATE";
page_width is 80;
page_length is 50;
signal_format is horizontal;

sample_signals by transaction in ns;
--sample_signals by event in ns;
select_signal : Clock;
-~select_signal : reset;
select_signal : instruction;
select_signal : out_1;

select_signal /uutl: Y2;
select_signal /uutl: Y1;
select_signal /uutl: Q2;
select_signal /uutl: Q1;

end TEST;

Report Format Information :
Time 1s in NS relative to the start of simulation

Time period for report is from 0 NS to End of Simulation
Signal values are reported by transaction (' ' indicates no transaction)

c.10

AUG-01-1990 10:09:43 VHDL Report Generator PAGE 2
TEST_GATE"

TIME |======—==me———mmmee— o eemm e SIGNAL NAMES—====—=n oo ommmoomm
(NS) CLOCK INSTRUCTION(2 DOWNTO 0) OUT 1 Y2 Y1 Q2 o1
'Ul HUUU" 'Ul |Ul IUI |Ul IUI

n100" 1 ' vy
X! 1]

+1
+2
+3
+4

'
101 ry

+1
+2
+5
+6

+1

+1
10
+1
+2
14
+1
16
+1
18
+1
+2
22
+1
24
+1
+4
26
+1
+2
+6
30
+1
32
+1
+4
+5
34
+1
+2

Tooo”

"000"

"oo1"

rooo”

Cc.1

AUG-01-1990 10:09:43 VHDL Report Generator PAGE 3
TEST_GATE"

(NS) CLOCK INSTRUCTION (2 DOWNTO 0) oUT_1 Y2 Y1l Q2 Q1
+7
38
+1
40
+1
42
+1
+2
+5
46
+1
48
+1
+4
S0
+1
+2
+5
+7

!
|
[
I
|
|
|
| mooo"
|
|
!
|
!
|
|
I
|
|
|
I
|
|
54 |
|
|
!
|
|
|
l
J
I
I
|
|
I
I
|
I
|
I
|
i
i
|

"001"

+1
56
+1
+4
+5
58
+1
+2
+7
62
+1
64
+1
+4
+5
66
+1
+2
+7
70
+1
72

rooo”

o

vy

001"

c.12

AUG-01-1990 10:09:43 VHDL Report Generator PAGE 4
TEST_ GATE"

{NS) CLOCK INSTRUCTION (2 DOWNTO 0) OUT 1 Y2 Y1 Q2 Q1

+1 "goL"
74
+1
+2
78
+1
B0
+1
82
+1
+2
86
+1
88
+1
+4
+5
90
+1
+2

|
|
!
|
|
|
I
|
I IO'
i
|
|
|
1
|
|
|
|
|
|
i
|
'
7 "o
|
|
!
|
|
i
|
!
|
!
|
|
!
n
|
!
|
!
|

"0o1"
nooo”

94
+1
96
+1
98
+1
+2
+5
102
+1
104
+1
+4
106
+1
+2
+6
110
+1

~000"

"0l11l:®

C.13

Appendix D: The Verification Software Environment

This appendix serves as a user's manual for AF[T's verification software environment which
consists of UC Berkeley's pre_verif and verif software and AFIT's b2s software. Although it is
intended as a standalone document, additional information which amplifies the contents of this
ar pendix may be found in Chapters 2, 3, 4, and 5 of the thesis. Where applicable, references will be

provided in this appendix to appropriate chapters of the thesis.

D.1 The Verification Software Environment.

Figure D.1 represents AFIT's verification software environment which performs verification of
sequential circuits which have been described in the behavioral or structural models defined in
Chapter 3 of this thesis. Verification may be performed ' _ ._an twc structurally described circuits,
two behaviorally described circuits, or o~ ¢i each. Chapter 4 describes the input file format for both
b2s and pre_verif. The intermedicry file, verif.input, is described in Chapter 2. All three software
tools, pre_verif, verit, and b2s may be found on AFIT's VLSI sun network in the directory

/tmp_mnt/auto/project/verification
The b2s software is cuirently available in source and executable form on the AFIT VLSI suns. The
software pre_verif and verif are available in source on the AFIT VLSI suns; currently they are

executable only on a microvax.

/ 31a0a /

4 T
andut andux
FTIVA JTIRA

sXd

219001

/// Fraeaexd ////// Ftaeaexd ///

829

7

ﬁ

sid

- 9I901 g

Q

Figure D.1 The Verification Software Environment.

D.2

D.2 Software Tutorial.

For the purposes of demonstration, these instructions will step through the verification of one
behaviorally described circuit against a structurally defined circuit. These circuits are labeled with the
numbers 1 and 2 in Figure D.1. First, the behaviorally specified sequential circuit will be processed
thruugh b2s and pre_verif. Next, the structurally modeled circuit will be processed through pre_verif.
Each pre_verif run will produce an input file for the verif software. Finally, verif will determine the

equivalence of the two verif.input files. Both VHDL files can be found at the end of this appendix.

D.2.1t The b2s Software.

The b2s software translates a behaviorally specified sequential circuit into a structurally
equivalent circuit. The input behavioral specification must be in the behavioral VHDL format described
in Chapter 4. Currently, b2s accepts VHDL behavioral models of only simple synchronous or
asynchronous Mealy sequential circuits. Further, although b2s does perform some source file
checking, the input VHDL source code is assumed to be syntactically and semantically correct. The
b2s software produces a structural VHDL output file formatted in the structural VHDL model
presented in Chapter 4. The b2s software is invoked from the system prompt by typing:

b2s [-options] filename
Where [-options] allows some user visibility into b2s's translation execution and filename is any
legal Unix filename. The file contains the behavioral VHDL model of the sequential circuit. The b2s
options permitted for [-options] are:

-de which causes b2s to print to stdout information regarding the sequential circuit's

VHDL entity.

-da which causes b2s to print to stdout translation information regarding the sequential

circuit's architectural body.

-dt which causes b2s to print to stdout translation information regarding the sequential

circuit's transition process,

D.3

-db which causes b2s to print to stdout translation information regarding the sequential
circuit's block constructs,
-dA which causes b2s to print to stdout all translation information, and,
-dT which causes b2s to print the state transition table generated from the behavioral
description.
Additionally, multiple options may be invoked by concatenation, for example:
b2s -dedT filename
causes execution of both the -de and -dT options. The b2s software puts the structurally equivalent
VHDL circuit in the file:
filename.struc
This output file name is created by appending . struc to the input file name. This new structural file is

represented by the number 3 in Figure D.1.

As a final note, it b2s encounters any difficulties translating the behavioral VHDL circuit,
carefully examine the nature of the behavioral file. Currently, b2s limits the "free-form” nature of the
VHDL which it accepts. Although the behavioral VHDL is completely analyzable and simulatable by
the VHDL software support environment, b2s is not a VHDL source code analyzer! In its current form
it expects certain VHDL constructs to be formatted in a certain fashion; Chapter 4 presents these

formats for the behavioral VHDL. Additionally, section D.4.1 presents an example.

D.2.2 The pre_verif Software.

The pre_verif software takes a structurally designed sequential circuit and extracts the circuit's
complete cover and minterm information. This information is placed in an output file named verit.input.
See Chapter 2 for further information regarding the contents of verif.input. The pre_verif software is
invoked from the system prompt by typing:

pre_verif [-options] filename

D.4

Where [-options] controls pre_verif's operation and filename is the name of the input file containing
the structurally designed circuit Many [-options] are possible for the pre_verif software. Simply
type:
pre_verif

at the system prompt for a complete listing. Only two of these options are of interest here, namely
-enum and -vhdl. The first option, —enum, instructs pre_verif to extract the complete cover and
minterm variable information and place this information in the output file verif.input. The second
option, -vhdl, informs pre_verif that the input file is a sequential circuit specified using the VHDL
structural mode! of Chapter 3. Lacking the -vhdl option, pre_verit will expect the input file to be in
the UC Berkeley structural netlist format. The complete command line invocation of pre_verif using a
VHDL structural input file is:

pre_verif -enum -vhdl filename
where filaname is the name of the VHDL structural file and can be any legal Unix filename. The two
options, -vhdl and -enum, are interchangeable in that:

pre_verif -vhdl -enum filename

is equivalent.

For purposes of the demonstration, the pre_verif software is invoked twice, once for the
structural file created by the b2s software (labeled number 3 in Figure D.1) and again for the other
structural file (labeled number 2 in Figure D.1). The two files created after both runs of pre_verif are
labeled with tha number 4 in Figure D.1. One caution must be take. after each invocation of the
pre_verif software. Because pre_verif always places the cover and minterm variable information into a
file named verif.input, the user should change this file’s name to prevent subsequent pre_verif
executions to delete the old verif.input file and in so doing, lose the information from previous
pre_verif runs. The verif.input file name can be easily changed at the Unix system prompt by typing:

mv verif.input filename

where filename is the new file name designated by the user.

D.5

D.2.3 The verif Software.

The verif software performs the actual verification, or equivalence check, of the two sequential
circuits. The verif software does not create an output file but simply prints verification information to
Unix's stdout. The software is invoked from the system prompt by typing:

verif filenamel filename2
Where filenamel and filename2 are the names of the two files created by the two separate
pre_verif runs. Hf the two sequential circuits are equivalent, verif will exit with the message:
#MACHINES ARE THE SAME
If the two circuits are not equivalent, verif will exit with the message:
#MACHINES ARE DIFFERENT
Accompanying this message will be a set of vectors which are the differentiating sequence for the two

machines. For example:

#MACHINES ARE DIFFERENT
#THE DISTINGUISHING SEQUENCE IS :

These vectors describe the input sequence which steps through the sequential circuits starting from
the each circuit’s initial state. The state reached upon application of the last vector is that state which is
different than the second machine’s state. The two machines may be debugged at this point by going
directly to the state transition graph for each machine and tracing through the paths via the vectors or

by applying the vectors directly to the sequential circuit's VHDL simulation.

D.6

D.3 Summary of Verification Process

The steps involved to verify the equivalence of two sequential circuits where one circuit is

described using the behavioral VHDL model (filename1) and the other using the structural VHDL

model (filename2), can be summarized as follows:

(1) Run b2s to translate the behavioral circuit into a structural equivalent :
b2s filenamel
{2) Run pre_verif on b2s's output file:
pre_verif -enum -vhdl filenamel.struc

(3) Rename the file created by pre_verif:

mv verif.input filenamel.verif
(4) Run pre_verif on the second file:

pre_verif -enum -vhdl filename2
(5) Perform the verification:

verif filenamel.verif verif.input

(6) Should verif report that the circuits are different, record the vectors which verif reports.

D.4 An Example b2s Translation

The following VHDL code describes the sequential circuit of Figure D.2. Section D.4.1

contains the behavioral VHDL code describing the circuit and Section D.4.2 contains the structural

VHDL code generated by the b2s software. This example is available in the directory:

/tmp_mnt/auto/project/verification/b2s

D.7

X2 X1/ out 2 out 1

N\

01/00
11/00
01/00
10/00 11/00
A B
00/10
A 3
00/00 10/00
10/00 11/01
ot/00 |
01/00
D C
10/00
00/00

Figure D.2 Example Sequential Circuit.

D.4.1 The VHDL Behavioral Version

use work.example pkg.all;

use work.BASICDEFS.all;

entity example is

port (
X1 : in
X2 : in
out 1 : out
out_2 : out
INITIALIZE : in
CLOCK ¢ in

)

end example;

logic_mv :
logic_mv :
logic_mv :
logic_mv :

logic_mv;
logic_mv

D.8

lul;
lul:
IUI;
IU';

00/00
11/00

architecture SYNCHRONOUS of example is

signal Present_State, Next_ State : States
:= Unknown_State;

signal Transition : Transition Resolution
Transition Conditions
BUS := No_Transition;

begin

-- synchronize the state to state transitions to the clock.
-- Note that signals on a process's sensitivity list must be
-- separated from the parenthesis by spaces!
process (clock)
begin
if (clock = '1l' and clock'event)
then Present_State <= Next_ State;
end if;
end process;

-- initialize and reset capability
-- Note that signals on a process's sensitivity list must be
-- separated from the parenthesis by spaces!
process (INITIALIZE)
begin
if INITIALIZE = 'l' and INITIALIZE‘event then
Transition <= INITIALIZE;
else
Transition <= null;
end if;
end process;

-- the State Machine Transitions
-~ Note that signals on a process's sensitivity list must be
-- separated from the parenthesis by spaces!
process (transition)
begin
case Present_State is

when State_C =>
case transition is
-- Notice that not all transitions in Figure D.2
-- are enumerated here. The ones not enumerated
-- are those which are transitions back into the
-- same state. They do not need to be enumerated;
-- in their absence, b2s adds them to the
-—- State Transition Table.
when zero_one =>
Next State <= State B;
when one_zero =>
Next State <= State D;
-- Additionally, b2s reserves two transition names:
-- INITIALIZE and RESET. These two
-- transitions must be used to transition the

D.9

-—- circuit into it's initial state.

They are

-- utilized ONLY IN THE VHDL; b2s ignores them.

when INITIALIZE =>
Next _State <=
when others =>
end case;

when State D =>
case transition is
when zero_one =>
Next State <=
when one_one =>
Next State <=
when one_zero =>
Next_State <=
when INITIALIZE =>
Next_ State <=
when others =>
end case;

when State_B =>
case transition is
when zero_zero =>
Next_ State <=
when one_zero =>
Next_ State <=
when INITIALIZE =>
Next State <=
when others =>
end case;

when State A =>
case transition is
when zero_zero =>
Next_State <=
when one_one =>
Next State <=
when INITIALIZE =>
Next_State <=
when others =>
end case;

when Unknown_State =>
case transition is
when INITIALIZE =>
Next State <=
when others =>
end case;

end case;
end process;

-- C State block
C: block (Present_ State = State C)

signal inputs : logic_vector mv (1 downto 0);

D.10

State_A;

State_C;
State_B;
State_A;

State_A;

State_D;
State_C;

State_A;

State_D;
State_ B;

State_A;

State_A;

-- the block signal "inputs” need not consist of all
-- input port signals of the entity. It should only consist
-~ of those inputs required for the state to operate
-- properly. Leaving out extraneous input port signals
-- reduces the variable count in the generated minterms.
—-- For this example, however, both X2 and X1 are required.
inputs <= X2 & X1;
process (GUARD, Inputs)
begin
if GUARD then
case inputs is
when "01" =>
transition <= zero_one;

when "10" =>
transition <= one_zero;

-- As mentioned in the transition process, not all

-- transitions are enumerated. If they were, the

~- following lines of code, which have been commented
-- out would be required. Implied their absence, b2s
-- inserts them into the state transition table.
--when "00"

- transition <= zero_zero;

--when 11"

- transition <= one_one;

~.en others =>
-— transition <= No_Transition;

end case;
else
transition <= null;
end if;
end process;

end block C;

-- D State block
D: block (Present_State = State D)

signal inputs : logic_vector mv (1 downto 0);

begin

inputs <= X2 & X1;

process (GUARD, Inputs)

begin

if GUARD then

case inputs is
when "10" =>
transition <= one_zero;

when "11% =>
cransition <= one_one;
out_1 <= '1';

when "01" =>
transition <= zero_ one;

when others =>
transition <= No_Transition;

end case;
else
transition <= null;
out_1 <= null;
end if;
end process;

end block D;

-- B State block
B: block (Present State = State_ B)
signal inputs : logic_vector mv (1 downto 0);
begin
inputs <= X2 & X1;
process (GUARD, Inputs)
begin
if GUARD then
case inputs is
when "00" =>
transition <= zero_zero;
out_2 <= '1"';

when "10%" =>
transition <= one_zero;

when others =>
transition <= No_Transition;

end case;
else
transition <= null;
out_2 <= null;
end if;
end process;

end block B;

-- A State block
A: block (Present_ State = State_A)
signal inputs : logic_vector_ mv (1 downto 0);
begin
inputs <= X2 & X1;
process (GUARD, Inputs)
begin
if GUARD then
case inputs is
when "00" =>
transition <= zero_zero;

when "11%" =>
transition <= one_one;

when others =>
transition <= No_Transition;

D.12

end case;
else
transition <=
end if;
end process;

end block A;

end SYNCHRONOUS;

null;

D.13

D.4.2 b2s's Structural Translation
The b2s software produces the following structural equivalent of the behavioral description of

section D.4.1.

-- Structural VHDL created by the b2s software -~

-~ Captain Rick Miller --
-- AFIT/ENG --

-~ Copyright (¢) 9 November 1990. -

use work.example pkg.all;

use work.BASICDEFS.all;

entity example is

port (
X1 : in logic mv := 'U';
X2 : in logic_mv := 'U’';
out_1 : out logic_mv := 'U';
out_2 : out logic_mv := 'U’;
INITIALIZE : in logic_mv;
CLOCK : in logic_mv

)

end example;

architecture STRUCTURAL of example is
--- Component Declarations

component inverter
generic(propagation delay : time := 0 ns);
port (
inl : in logic_mv = 'y’
outl : out logic mv = U’

);
end component;

for all : inverter use
entity WORK.inverter (BEHAVIORAL) ;

component ANDm

generic(propagation_delay time
port (
Inl : in logic_vector mv;
outl out logic - v 1=

)

.
£

end component;

for all

ANDm use
entity WORK.ANDm (BEHAVIORAL) ;

component ORm

port
I
o)

)

generic(propaga’ ion_delay time
nl : in logic_vector mv;
utl : out logic_mv 1=

.
’

end component;

for all

ORm use
entity WORK.ORm (BEHAVIORAL) ;

component D_£f

generic{ propagation_delay time
port {(
D _in in logic_mv e
Q out : out logic_mv
CLK in logic _mv =
Clear : in logic_mv s=
SET : in logic_mv 1=

)

.
’

end component;

for all

D_ff use
entity WORK.D_ff(BEHAVIORAL);

Internal Signal Declarations

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

Qinit :

out_1 in0
out_2 in

Y1l in7
Yl _iné
Y1l _in$
Yl in4
Yl in3
Y1l in2
Yl inl
Yl in0
OR_Ylin
Y0_in8
Y0_in7
Y0 _iné6

logic_vector mv
logic_vector_mv
logic_vector _mv
logic _vector mv
logic_vector_m-
logic_vector_mv
logic_vector_mv
logic_vector mv

logic_vector mv (7 downto 0

(

o~ o~ o -~ o~

:= 0 ns)

IUI

IUI

0 ns)

’

’

:= 0 ns);
IUI;
= Ut
'Ul’-
IUI;
lUl

WWwwwwwww

downto
downto
downto
downto
downto
downto
downto
downto

OO0 OO O0O0O0OO0O0O

logic_vector_mv (1 downto 0 });
: logic_vector mv (3 downto
: logic_vector mv (3 downto

— S e et e e e

0
0

’

~e “e

~,

~e e

)

logic_vectox_mv (3 downto 0);
logic_vector mv (3 downto 0);
logic_vector mv (3 downto 0);

D.15

):
Y

signal Y0_in5 : logic_vector_mv (3 downto 0);
signal Y0_in4 : logic_vector mv (3 downto 0);
signal Y0_in3 : logic_vector_mv (3 downto 0);
signal Y0 _in2 : logic_vector_mv (3 downto 0);
signal Y0_inl : logic_vector_mv (3 downto 0);
signal Y0_in0 : logic_vector mv (3 downto 0)

siamal OR Y0in : logic_vector mv (8 downto 0);
signal Q0 _NOT : logic_mv;

signal Q0 : logic_mv;

signal Y0 : logic_mv;

signal Q1 NOT : logic_mv;

signal Q1 : logic_mv;

signal Y1 : logic_mv;

signal X2 NOT : logic_mv;

signal X1 _NOT : logic_mv;

g0 : inverter
port map(X1, X1 NOT):

gl : inverter
port map(X2, X2 NOT);

g2 : inverter
port map(Q1, Q1 NOT);

g3 : inverter
port map(QO0, Q0 _NOT);

-- Following combinational logic generates flip-flop input (s).
~- The following combo logic generates: YO
YO0 _in0 <= X2 & X1 & Q1 & QO;

begin
|

|

|

|

g4 : ANDm

| port map(YO in0 , YO O);

‘ — -

Y0_inl <= X2_NOT & X1_NOT & Q1 & QO;

ANDm
port map(Y0 inl , Y0 _1);

.

g5

YO0 _in2 <= X2 & X1 & Q1 NOT & QO;

g6 : ANDm
port map(Y0_in2 , Y0_2);

Y0_in3 <= X2_NOT & X1 & Q1 _NOT & QO;

g7 : ANDm
port map(Y0 _in3 , Y0_3);

YO0_in4 <= X2 NOT & X1 & Q1 & QO;

g8 : ANDm
port map(YO _in4 , Y0_4):

D.16

g9

glo

gll

gl2

gl3

gl4

gls

glé

gl?

gls

gl9

Y0_in5 <= X2_NOT & X1 & Q1 & QO_NOT;

: ANDm

port map(¥Y0_in5 , Y0_5);

YO in6 <= X2 & X1 & Q1 & QO NOT;

: ANDm

port map(Y0_in6 , Y0 6);

YO_in7 <= X2 & X1_NOT & Q1_NOT & QO;

: ANDm

port map(Y0 _in7 , Y0_7);

Y0 in8 <= X2 & X1 & Q1 NOT & QO_NOT;

: ANDm

port map(Y0_in8 , YO _8);

OR YOin <= Y0 0 & YO 1 & YO 2 & YO_3 & YO 4 & Y05 & YO_6 & YO 7 & YO 8;

: ORm

port map(OR ¥Y0in , Y0);
-—- The following combo logic generates: Y1
Yl in0 <= X2 & X1 & Q1 & QO0;

ANDm
port map(Yl _in0 , Y1 0);

Y1 _inl <= X2_NOT & X1_NOT & Q1 & QO;

: ANDm

port map(¥l _inl , Y1 1);

Y1l in2 <= X2_NOT & X1_NOT & Ql & QO_NOT;

: ANDm

port map(Y1l_in2 , Y1 2);

Y1 in3 <= X2 & X1_NOT & Q1 & QO;

: ANDm

port map(¥1_in3 , Y1 3);

Yl ind4 <= X2_NOT & X1 & Q1 & QO_NOT;

: ANDm

port map(Yl _in4 , Y1 4);

Y1 in5 <= X2_NOT & X1_NOT & Q1_NOT & QO0;

: ANDm

port map(Yl1_in5 , Y1 5);

Yl _in6 <= X2 & X1_NOT & Q1 _NOT & QO,

D.17

g20

g21

g22

g3

g24

FF1

FFO

.

ANDm
port map(Yl _in6 , Y1 6);

¥l _in7 <= X2_NOT & X1_NOT & Q1 NOT & QO NOT;

ANDm
port map(Yl_in7 , Y1 7);

OR_Ylin <= Y1 0 & Y1_1 & Y1 2
ORm
port map(OR_Ylin , Y1);

-- Following combinational logic generates circuit output (s).

-- The following combo logic generates: out_ 2

ANDm
port map(out_2 in0 , out_2);

-- The following combo logic generates: out_1

out_1 in0 <= Q1 & QO NOT & X2
ANDm

port map{ out_1 in0 , out_1);
-- Flip-Flops

D ff

port map (Y1, Ql, CLOCK, CLEAR, SET);

D_ff

port map (Y0, Q0, CLOCK, CLEAR, SET):;

~- Initialize/Reset control

Qinit <= "Q00" after 1lns,
"Z2Z" after 5ns;

Q0 <= Qinit (0j;
Ql <= Qinit (0);

end STRUCTURAL;

& Yl 3 &Yl 46 Y156 7Yl 66& YL 7;

& X1;

D.18

out_2_in0 <= Q1 _NOT & Q0 & X2_NOT & X1_NOT;

D.4.4 An Exercise

As an example of the verification process, perform the following exercise. This exercise

performs a verification of the sequential circuit "example,” which is described via the behavioral VHDL

model against another sequential circuit "hand_made,” which is described via the structural VHDL

model. The structural VHDL description of handmade follows the exercise. All instructions are

performed at the Unix prompt.

(1)

2

3)
(4)

(5)

type: b2s example.vhd

This instructs b2s to translate the VHDL behavioral circuit into a structural equivalent.
type: pre_verif —enum -vhdl example.vhd.struc

This instructs pre_verif to process the structural description in example.vhd.struc and
place its output into verif.input.

type: mv verif.input example.verif

type: pre_verif -enum -vhdl hand made.vhd

This instructs pre_verif to process the structural description in hand_made.vhd and
place its output into verif.input.

type: verif example.verif verif.input

When verif execution is complets, the following should be displayed on the screen:
Machine 1 inputs 2 outputs 2 latches 2

Machine 2 inputs 2 outputs 2 latches 2

#Time to read in covers : 1.300000e-01 secs

#MACHINES ARE THE SAME

Number of states = 4

Number of edges = 15

Number of entries = 7

Number of save_difs = 0

#Time for verification : 7.000000e-02 secs
#Total user time : 2.000000e-01 secs

D.19

The handmade sequential circuit is described as:
use work.example pkg.all;

use work.BASICDEFS.all;

entity example is

port {
X1 : in logic_mv := 'U’;
X2 : in logic mv := 'U’;
out_1 : out logic mv := 'U’;
out_ 2 : out logic_mv := 'U';
INITIALIZE : in logic_mv;
CLOCK : in logic_mv

end example;

architecture Hand made of example is

component inverter
generic(propagation delay : time := 0 ns);
port (
inl ! in logic_mv = 'y’
outl : out logic_mv = 'y!
)i

end component;

for all : inverter use
entity WORK.inverter (BEHAVIORAL) ;

component ANDm
generic(propagation_delay : time := 0 ns);
port (
Inl
outl
)3

in logic_vector_mv;
out logic mv = 'y

end component;

for all : ANDm use
entity WORK.ANDm(BEHAVIORAL) ;

component ORm
generic(propagation_delay : time := 0 ns);
port (
Inl : in logic_vector_mv;
outl : out logic_mv = 'Y

)

end component;

D.20

for al

1

component D_ff

generic(propagation_delay

port

)

D_in
Q_out
CLK
Clear
SET

ORm use

entity WORK.ORm(BEHAVIORAL) ;

LY
’

time := 0 ns);
in logic_mv = 'Ut;
: out logic_mv = 'U
in logic_mv = 'U';
in logic_mv = 'U';
in logic_mv = U’

-
!’

end component;
for all D_ff use
entity WORK.D ff (BEHAVIORAL)
signal X1 _NOT, X2 _NOT, QO_NOT, Q1 NOT logic_mv
signal g4in : logic_vector mv (1 downto 0);
signal g4out : logic mv := 'U’';
signal g5in : logic_vector mv (1 downto 0);
signal g5out logic_mv := 'U';
signal g6éin : logic_vector mv (2 downto 0);
signal gé6out logic_mv := 'U';
signal g7in : logic_vector mv (2 downto 0);
signal g7out : logic mv := 'U‘';
signal g8in logic_vector mv (2 downto 0 };
signal g8out : logic mv := 'U';
signal g9%in : logic_vector mv (4 downto 0);
signal gl0in : logic_vector mv (1 downto 0);
signal glOout : logic mv := 'U’;
signal gllin : logic_vector_mv (1 downto 0);
signal gllout : logic_mv := 'U’;
signal gl2in : logic_vector mv (2 downto 0);
signal gl2out : logic_mv := 'U’;
signal gl3in : logic_vector_mv (2 downto 0);
signal gl3out : logic_mv := 'U’;
signal gl4in : logic_vector mv (3 downto 0);
signal gl5in : logic_vector mv (3 downto 0);
signal gl6in : logic_vector mv (3 downto 0);
begin
g0 : inverter
port map(X1, XI_NOT)
gl : inverter
port map(X2, X2 _NOT);
g2 inverter
port map(Q1, Ql_NOT)
g3 inverter

D.21

IUI’.

g4

gs

g6

g7

g8

g9

glo

gll

gl2

gl3

port map(QO0, QO _NOT);

-- The following generates YO0:

g4in

¢ ANDm

g5in

gb6in

g7in

g8in

g9in

: ORm

-— Th

glOin

: ANDm

gllin

gl2in

gl3in

gl4in

<= X1 & QO;

port map (g4in , g4out);

<= X1 & Qi;

port map { g5in , g5out);

<= X2 _NOT & Q0 & Q1;

port map {(géin , gbout);

<= X1 & X2 & Q1_NOT;

port map (g7in , g7out);

<= X2 & Q0 & Q1_NOT;

port map (g8in , g8out);

<= g4out & gS5out & gbout & g7out & g8out;

port map (g9in, YO0);
e following generates Yl:

<= X2_NOT & X1 _NOT;

port map (gl0in , glOout);

<= X1_NOT & QO0;

port map (gllin , gllout);

<= X2_NOT & QO _NOT & Q1;

port map (gl2in , gl2out);

<= X2 & Q0 & Q1;

port map (gl3in , gl3out);

<= glOout & gllout & gl2out & gl3out;

D.22

gl4

glS : ANDm
port map (gl5in , out_1);
-~ The following generates OUT_2:
gl6in <= X1 NOT & X2 _NOT & Q1 NOT & QO
glé : ANDm
port map (gléin , out_2);
-- The flip=flops:
FFl1 : D_ff
port map (Y1, Q1l, CLOCK, CLEAR, SET);
FFO : D_ff

ORm
port map (gl4in, Y1);

-- The following generates OUT_1:

gl5in <= X1 & X2 & Q1 & Q0 _NOT;

port map (YO, QO0, CLOCK, CLEAR, SET);

-- Initialize/Reset control

Qinit <= "00" after 1lns,
"ZZ" after 5ns;

Q0 <= Qinit (0);
Ql <= Qinit (0);

end Hand_made;

D.23

Appendix E. Behavioral Design Example

This appendix contains examples of VHDL code segments representing various portions of a
tm-bus module implemented using the behavioral model proposed in Chapter 3. These code
segments represent implementations of a skeletal tm-bus module, the tm-bus transition process, and

two representative tm-bus module states. They may be acquired by contacting:

Major K. Kanzaki

AFIT/ENG

Department of Electrical and Computer Science
School of Engineering

Air Force Institute of Technology
Wright-Patterson AFB, Ohio, 45433

E.A

]

Appendix F. Structural Design Examples

This appendix contains examples of sequential circuits implemented using the structural
model proposed in Chapter 3. See Chapter 5 for details concerning the functionality of these

sequential circuits.

Example Page
Sequence Detector (AND-OR version) E.2
UC Berkeley Format Equivalent E.5
Sequence Detector (NAND version) E.6
UC Berkeley Format Equivalent E.S

Sequence Detector

(altemate state assignment version) E.10
UC Berkeley Format Equivalent E.13
Sequence Detector Test Bench E.14
VHDL Simulation Report E.16
Eight Instruction CPU Controller (correct) E.22

Eight Instruction CPU Controller

(incorrect JUMPZ combinational logic) E.31
CPU Controller Test Bench E.32
CPU Controller VHDL Simulation Report E.35
CPU Verification Time Required Report E.62
CPU VHDL Time Required Report E.64

F.1

use WORK.basicdefs.all;
use work.SD_package.all;
entity Sequence Detector is

-~ generic ();

port (
Xin ¢ in logic_mv = 'y,
CLOCK ¢ in logic_mv := 'U';
Zout : out logic_mv = 'U’';
INITIALIZE : in logic mv = 'y’

)

end Sequence Detector;

architecture STRUCTURAL1 of Sequence Detector is

component inverter
generic(propagation_delay : time := 0 ns);
port (
inl : in logic_mv = 'y’
outl : out logic_mv :
)i

end component;

for all : inverter use
entity WORK.inverter (BEHAVIORAL) ;

component ANDm
generic(propagation_delay : time := 0 ns);
port (
Inl : in logic_vector_mv;
outl : out logic mv := 'U’
)
end component;

for all : ANDm use
entity WORK.ANDwm (BEHAVIORAL) ;

component ORm
generic(propagation_delay : time := 0 ns);
port (
Inl : in logic_vector_mv;
outl : out logic mv := 'U’
)i

end component;

for all : ORm use
entity WORK.ORm (BEHAVIORAL) ;

component D_ff
generic (propagation_delay : time := 0 ns);

port (
D_in : in logic_mv = 'U';
Q out : out logic_mv = '7J';
CLK ¢ in logic_mv = 'Y’
Clear : in logic_mv H T A
SET : in logic_mv = U

)

F.2

end component;

for all : d_ff use
entity WORK.D_ff (BEHAVIORAL) ;

-~-- Internal Signal Declarations

signal Y1,
Yz,
Q1,
Q2 : logic_mv := 'U';

signal Xnot,
Qlnot,
Q2not,
AND1l output : logic_mv := 'U’';

signal ANDl input,
AND2 lnput,
OR1_input,
Qinit : logic_vector mv (1 downto 0) := "UU";

signal AND3_input : logic_vector_mv (2 downto 0)

= "guun";
begin
gl : inverter
port map (Q2, QZ2Znot);
g2 : inverter
port map (Xin, Xnot);
g3 : inverter

port map (Ql, Qlnot);
--- Logic to derive Y1:
AND1l _input <= (1 & QZnot;

g4 : ANDm
port map (AND1l_input, AND1l_output);

OR1l_input <= Xin & AND1l output;

g5 : ORm
port map (ORl_input, Y1);

--- LOGIC to derive Y2
AND2_ input <= Xnot & Q1 ;

g6 : ANDm
port map (AND2 input, Y2);

--- LOGIC to derive Zout

AND3 _input <= Xin & Qlnot & Q2 ;

F.3

g7 : ANDm

port map (AND3 input, Zout);

--- Registers

FFl : D ff

port map (Y1, Q1, CLOCK, CLEAR,

FF2 : D ff

port map (Y2, Q2, CLOCK, CLEAR,

Qinit <= "00® after 1ns,

"zZ" after 20ns;
gl <= Qinit (0);
q2 <= Qinit(1);

end STRUCTURALL;

F.4

SET) ;

SET

Y

name Sequence_Detectorl
i xin

o Zout

gl not g2 ; g2not

g2 not xin ; xnot

g3 not gl ; glnot

--- Logic to derive Y1:
g4 and gl g2not ; ANDlout

g5 or xin ANDlout ; Y1

-—-- LOGIC to derive Y2

g6 and xnot ql ; Y2

-—-- LOC.C to derive zout
g7 and xin glnot g2 ; Zout
--- Registers

ps ql
ns Y1

ps g2
ns Y2

F.5

use WORK.basicdefs.all;

entity Sequence Detector is
-—- generic ();

port (
Xin : in logic mv = Ut
CLOCK : in logic mv o= 'y
Zout : out logic mv = 'U’';
INITIALIZE : in logic_mv = 'U’

)

end Sequence Detector;

architecture STRUCTURALZ2 of Sequence Detector is

component inverter

generic(riopagation delay : time := 0 ns);
port

inl : in logic mv = 'y';

outl : out logic_mv = 'y’

)

end component;

for all : inverter use
entity WORK.inverter (BEHAVIORAL) ;

component NANDm
generic{ propagation delay : time := 0 ns);
port (
Inl : in logic vector mv;
out 1 : out logic mv := 'U’
)

end component;

for all : NANDm use
ent ity WORK.NANDm(BEHAVIORAL) ;

component. ORm

generic(propagation delay : time := 0 ns);
port (
Inl : in logic vector mv;
out 1l : out 1(.,)gi(:>”mvr = 'y
)

and component. ;

for all : ORm use
ent ity WORK. ORm(BRHAVLINRAL) ;

component D f

gqenearic (propagat ion delay Ctime = 0 na)
port

D oin oin logic my = tur

Q out : oout logic mvy Rt)

"1,K coin logic my FR R A

Clear : in logic my [| A

F6

end

begin

gl

g2

g3

SET : in logic mv r= 'y
):

component. ;

for all : d_ff use
entity WORK.D_ff(BEHAVIORAL);

Internal Signal Declarations

signal Y1,
Y2,
Q1,
Q2 : logic mv := 'U’;

signal Xnot,
Qlnot,
Q2not,
NAND1 output,
NAND2 output,
NAND3 output,
NAND4 output : logic_mv := 'U';

signal NAND1l input,
NAND2 input,
NAND3 input,
OR1_input,

Qinit : logic vector 'av (1 downto 0) := "UU";

signal NAND4_ input : logic vector mv (2 downto 0)

inverter
port map (Xin, Xnot);

inverter
port map (Q2, QZ2not);

inverter
port map (Ql, Qlnot);

Logic to derive Y1:
NAND1 input <= Q1 & QZ2not;

g4 : NANDm
port map (NAND1 input, NAND1l output);

NANDZ input <= Xnot & NANDl output;

g5 : NANDm
port map (NANDZ input, Y1);

LOGIC to derive Y2

NAND3 input <= Xnot & Ql;

36 : NANDm

c= "Uyuu";

port map

g7 : inverter
port map

(NAND3_input, NAND3 output);

(NAND3 output, Y2);

-—- LOGIC to derive Zout

NAND4_input <= Xin & Qlnot & Q2;

g8 : NANDm
port map

g9 : inverter
port map

--- Registers

FFl : D_ff
port map

FF2 : D_ff
port map

(NAND4_input, NAND4 output);

(NAND4 output , Zout);

(Y1, Ql1, CLOCK, CLEAR, SET);

(Y2, Q2, CLOCK, CLEAR, SET);

-- The following specifies the initial state vector of the register:

Qinit <= "00" after 1ns,
®z2z® after 20ns;

gl <= Qinit (0);
g2 <= Qinit (1);

end STRUCTURALZ;

F.8

name Sequence_Detector

i Xin

© Zout

gl not Xin ; Xnot

g2 not Q2 ; Q2not

g3 not Q1 ; Qlnot

--- Logic to derive Y1:

g4 nand Q1 Q2not ; NAND1l output
g5 nand Xnot NAND1l output ; Y1

--- LOGIC to derive Y2

g6 nand Xnot Q1 ; NAND3 output

g7 not NAND3 ocutput ; Y2

--- LOGIC to derive Zout

g8 nand Xin Qlnot Q2 ; NAND4_ output
g9 not NAND4_output ; Zout
--- Registers

ps Q1

ns Y1

ps Q2

ns Y2

I

00

F.9

use WORK.basicdefs.all;

entity Sequence Detector is

port
Xin : in logic_mv = 'U';
CLOCK : in logic mv = 'U';
Zout : out logic_mw = 'U’';
INITIALIZE : in logic_mv = 'y’

)

end Sequence_Detector;

architecture STRUCTURAL3 of Sequence_Detector is

component inverter

generic(propagation_delay : time := 0 ns);
port (

inl : in logic mv = 'y’

outl : out logic_mv = 'y’

)
end component;

for all : inverter use
entity WORK.inverter (BEHAVIORAL) ;

component ANDm
generic(propagation_delay : time := 0 ns);
port (
Inl : in logic_vector mv;
outl : out logic_mv := 'U’
):

end component;

for all : ANDm use
entity WORK.ANDm (BEHAVIORAL) ;

component ORm
generic(propagation_delay : time := 0 ns);
port (
Inl : in logic_vector mv;
outl : out logic_mv := 'U’'
|
end component;

for all : ORm use
entity WORK.ORm (BEHAVIORAL) ;

component D_ff
generic (propagation_delay : time := 0 ns);

port (
D_in : in logic nmv = 'U’;
Q_out : out logic mv = 'y’
CLK : in logic_mv = 'U’;
Clear : in logic_mv = Uy
SET : in logic_mv = 'Y

)

end component;

F.10

for all : d_ff use
entity WORK.D_ff (BEHAVIORAL) ;

--- Internal Signal Declarations

signal Y1,
Y2,
Q1,
Q2 : logic mv := 'X';

signal Xnot,
Qlnot,
Q2not,
AND1 output,
OR1_output : logic mv = 'X';

signal AND1l_input,
ANDZ_ input,
OR1_input,
Qinit : logic_vector mv (1 downto 0) := "™XX";

signal AND3 input : logic_vector mv (2 downto 0)

t= TXXXW;
begin
-~ gl : inverter
- port map (Q2, Q2not);
g2 : inverter

port map (Xin, Xnot);
g3 : inverter
port map (Q1l, Qlnot);
--- LOGIC to derive Y1
- where Y2 = xnot and (gl or g2)
OR1l_input <= Q1 & Q2;

g4 : ORm
port map (ORl_input, OR1l_output);

AND2 input <= Xnot & ORl_output;

g5 : ANDm
port map (AND2 input, Y1);

--- Logic to derive Y1
-—- where Y2 = xnot and glnot

AND1_input <= Xnot & Qlnot:;

g6 : ANDm
port map (AND1 input, Y2);

FF1

FF2

LOGIC to derive Zout

AND3 input <= Xin & Q1 & Q2;

g7 : ANDm

port map (AND3 input, Zout);

Registers

D _ff
port map (Y1,

: D_ff
port map (Y2,

when INITIALIZE select

Qinit <= "0l1" when
Qinit <= "2ZZ" when others;

end STRUCTURAL3;

Q1, CLOCK, CLEAR,

Q2, CLOCK, CLEAR,

lll’

F.12

SET),

SET

)

2

name Sequence_Detector

i Xin

o Zout

gl not Q2 ; QZ2not

g2 not Xin ; Xnot

g3 not Q1 ; Qlnot

--—- LOGIC to derive Y1

¥ --- where Y2 = xnot and (ql or q2)
g4 or Q1 Q2 ; ORl_output

g5 and Xnot ORl_output ; Y1

--- Logic to derive Y1
¥ -—- where Y2 = xnot and glnot

g6 and Xnot Qlnot ; Y2

--- LOGIC to derive Zout
g7 and Xin Q1 Q2 ; Zout

ps Q1
ns Y1

ps Q2
ns Y2

F.13

entity TEST_ BENCH is
end TEST_BENCH;

use work.BASICDEFS.all;

~-use WORK.SD_Package.all;

use STD.SIMULATOR STANDARD.all;

use STD.TEXTIO.all;

architecture SD_test of TEST_BENCH is

component Sequence_Detector

port (
Xin : in logic mv = 'u';
CLOCK : in logic_mv = 'U';
Zout : out logic_mv = 'U';
Clear : in logic_mv = 'U';
Set : in logic_mv = 'U';

)
end component;

for UUT1 : Sequence_Detector use
entity work.Sequence Detector (Structurall);

for UUT2 : Sequence_ Detector use
entity WORK.Sequence Detector (structurall);

for UUT3 : Sequence_Detector use
entity WORK.Sequence Detector (structural3);

signal instruction : logic vector mv (2 downto 0)
t= "UUU“;._ -
alias input_string : logic_mv is instruction(0);
alias RESET : logic_mv is instruction(l);
alias CLEAR : logic_mv is instruction(2);
signal CLOCK : logic_mv;
signal ouT_1,
ouT 2,
OUT_3 : logic_mv;
begin
process
file INSTRUCTIONS : TEXT is in "Input_String";
variable L : Line;
variable machine_code : bit_vector (2 downto 0);
begin
readline (INSTRUCTIONS, L);
if ENDFILE (INSTRUCTIONS) then terminate; L if;

read (L, machine_code);
case machine_code is
when "000"™ => instruction <= "Q00";
when "001" => instruction <= "Q01%;
when "010" => instruction <= "(Q010";

F.14

when "011" => instruction <=
when "100" => instruction <=
when "101" => instruction <=
when "110" => instruction <=
when "111" => instruction <=

end case;
wait for 8ns;
end process;

process
begin
set maximums (10000,100);
tracing_on;
wait for 500ns;
terminate;
end process;

make_Clock : process
begin
wait for 2ns;
CLOCK <= '1';
wait for 4ns;
CLOCK <= '0';
wait for 2ns;
end process make_Clock;

UUT1 : Sequence_Detector
port map (input_string, CLOCK,

UUT2 : Sequence_ Detector

T011";
"i00";
"101"~;
110",
"1l11ivw;

OUT_1, RESET, CLEAR);

port map (input_string, CLOCK, OUT_2, RESET, CLEAR);

UUT3 : Sequence_Detector

port map (input_string, CLOCK, OUT_3, RESET,

end SD_test;

F.15

CLEAR) ;

T 3ovd

9b9E8Y LY IC :te3T13q XeRW

LOBGLLVPGBIEOZLEECTZE6 BWTL XeW

adx-3sa3 ps : ertd anding 3zoday
101° 3593 :aT1td 9benbue] Tozjuop 310day

€0:11:00 :awyl uny
0661-€1-20Y :83eQ UNY
T :318373uspl uny

{1531 pus

{gTano : Teubys 3o0aTes

1D :gann/ Teubis 3oaTes

{20 :iganny/ Teubis 3oaTes

!z ano : Teubys 309T9s

{10 :zanny teubys 3o9Tss

12D :zann/ Teubys 309798

{7 ano : Teubys 30aTes

{10 :13ann; Teubys 3oaTes

120 :13nn/ teubys 3oeTes
{uoT3aonI3sUY : Teubys 09T
{39891 : Teubys 309T98--—

{X00T) ¢ Teubys 3097eSs

fsu uyl 3usAd Aq sTeubys erdwes-—
{su uy uol3oesuerl &q syeubys erdwes

f{1ejuozTioy st 3ewrol Teubys
{09 sT yabust ebed

_f0z1 ST yapim abed

{43523 (S. §7 eaweu jxodax
utbaq

87 1S3l 3rodex uojjeTnWTS

: sbenbueq Toijuop zoday

€0:TT1:00 :SBWTL uoTleadl) TaUAI)Y
066T-€ET-90NY :@3eQ uUOTILaI) TOUISY
1S3AL aS<<TVENLONNIS “dATTIMNY>> :oweN K eIqyT Teulay
1891 gS :aweN 33odey

31oday uoyjeTnuIs IPYA

%1593 s
Io3e1auag 31oday TaHA

TT:11:00

0661-€1-9NV

F.16

(uotioesueiyl ou

§33®DTPUYT , ,) UoTIoesueil Aq pelzodea ai1v santea Teubys
uoTITTNWTS IO pug 03 SN 0 woxr3 87 3Irodax 103 potiad swyl
UOTIRTNWTS JO 31B3S 3yl O3 SATIPIAI GN UT =T 2wyl

¢ uotjewiojul 3ewiog 3aoday

F.A7

.O-
_O— -o-

-o-
-,H. _O-
-H- .O-

.O—
-H- _o.

-O-

.x-

-x-
-D- -D- -D-
£ Ino 10 Z0

Z dov4

1 X
1 X
o N

-o-
0. (T
10
o- .O-
O. _O-
.o.
—O-
O- .O-
-O-
X
D- -D. -D-
Z0 1 Ino 10

w3531 as
103e13uan 310day TQHA

wl00wn

w000u

w000n

w00l
N . w10

t4e} (0 OINMOG Z)NOILDMIISNI

T+
ot
G+
v+
Z+
T+
9z
€+
1+
| 24
T+
(x4
Z+
T+
81
T+
91
T+
b1
Z+
T+
01
T+

T+

S+
b+
Z+
T+

b+
€+
4+
14
-D.

AD0TO (SN)

JNIL

TT:2T11:00 066T-€1-9N¥

F.18

-O—
.,C. 2+ T
W04
-O—
-O- -o.
-.ﬂ_
10
VT VT
10
.O- -ﬂ-
-O-
€ 1no 10 F4o)
€ 3ovd

-O-
-H- _H_ -.ﬁ-
-Op
-o. -o-
-o-
-.ﬂ- .o_ s.ﬁ-
-H-
-ﬁ.
-O-
.O- -H- -o.
(0,
-ﬂ- -ﬂ.- -H-
0,
z 1no 10 Fdo) 1 100 10

w3893 Qs
I023v1uan 3310ded TTAHA

w000«

w100«

w000«

u000w

[4¢} (0 OINMOQ Z)NOILONYISNI

T+
29
b+
Z+
1+
8s
€+
T+
94
1+
bS
G+
b+
Z+
1+
0S
b+
€+
1+
8d

10

9t
G+
b+
Z+
1+
(44
1+
s34
1+
8E
b+
Z+
1+
|2
€+
1+
I4%

T

A

 felegte] (SN)

ANIL

TT:11:00 0661-E1-00¢

F.19

w000u Il 1+
l 96
[1+
I b6
| b+
12+
I T+
I 06
[

u000u | 1+

I 88

I 1+

| 98

lZ+

I 1+

I Zs

|

|

|

t

|

!

|

|

|

|

|

|

1

|

|

|

wl00u 1+
08
1+
8L
I+
T+
YL
T+
L
T+
oL
| 23
4+
1+
99
£+

F.20

«100u

0, 100

w100w T4

!
I %9
|
£ 10O 0 [4e] Z Ino 10 Z0 T IN0 10 zZ0 (0 OLNMOG Z)NOILDNYISNI AD0T1O [(SN)
!
| @il

w1891 @S
v 3ovd I03e1susn 310dsy TAHA T1:11:00 0661-€1-90¥

S 39vd

v L

-o-
s U 1 T 1 T
-ﬂ.
«lT10u
10,
v Lo 10 T
Z0 1T 100 10 f4e] (0 OINMOQ Z)NOILDNYISNI

«1S31 as
J03Rv12ud39 310dad TAHA

T+
011
9+
G+
b+
z+
1+
901
b+
€+
T+
pOT
1+
20T
S+
b+
z+
1+
86

(SN)

........... | aWIL

T1:17:00 0661-C1-9NV

F.21

use work.BASICDEFS.all;
use work.CPU_package.all;

entity CPU_CONTROLLERI is
-- generic ();

port (INSTR2 : in logic mv;
INSTR1 : in logic:hv;
INSTRO : in logic_mv;
CLOCK ¢ in logic_mv;
RESET : in logic_mv H
ZERO_FLAG : in logic_mv;
Control bus : out logic_vector _mv bus (12 downto 0)
= TXAXXAAXXKXXAX"
INITIALIZE : in logic mv

)
end;

architecture STRUCTURAL of CPU_CONTROLLERL is

component inverter

generic(propagation_delay : time := 0 ns);
port

inl : in logic_mv := 'U';

outl : out logic_mv HE IR

):
end component;

for all : inverter use
entity WORK.inverter (BEHAVIORAL) ;

component ANDm

generic(propagation delay : time := 0 ns);
port (Inl : in logic_vector mv;
outl : out logic_mv := 'U'

)i
end component;

for all : ANDm use
entity WORK.ANDm (BEHAVIORAL) ;

component ORm

generic(propagation_delay : time := 0 ns);
port (Inl : in logic_vector_mv;
outl : out logic_mv = 'U!’

)
end component;

for all : ORm use
entity WORK.ORm(BEHAVIORAL) ;

component D_ff

generic (propagation_delay : time <:= 0 ns);
port {

D_in : in logic_mv = 'U';

Q out : out logic_mv = 'u';

CLK : in logic_mv = 'U';

Clear : in logic_mv = ‘U,

F.22

SET : in logic_mv = 'U’
)
end component;

for all : d_£ff use
entity WORK.D_ff (BEHAVIORAL) ;

--- Internal Signal Declarations

signal INSTR2not, INSTRlnot,
INSTROnot, ZERO_FLAGnot : logic mv := 'U';

signal YO, Y1, Y2, Y3, Y4, YS, Y6,
Y7, ¥8, Y9, Y10, Y11, Y12, YRO, YIO : logic_mv := 'U’;

signal QOI er QZI Q3r Q4I Qsl QG’
Q7, @8, Q9, Q10, Q1l1, Q12,
QRO, QIO : Wired OR logic_mv := 'U’;

signal QOnot, Qlnot, Q2not, Q3not, Q4not, Q5not, Q6not,
Q7not, Q8not, Q%not, Q1l0not, Qllnot, Ql2not,
QROnot, QIO0Onot : logic mv := 'U';

signal ANDyr0 : logic_mv_vector(l downto 0) := "UU";

signal ANDload, ANDstore, ANDadd, ANDand,
AND jump, ANDjumpz, ANDcomp,
ANDrshift, : logic_vector mv(2 downto 0) := "UUU";

signal ANDy2, ANDy3, ORy3b, ANDy4, ANDyS,
ANDyiO, ORyi0, ANDy7, ANDy8a, ORyS8,
ANDy9, ANDylOb, ANDyl2, ANDyiO,
ORyi0, ANDyr0 : logic_vector_mv{(l downto 0) := "UU";

signal ANDy0O, ANDyl, ORy3a, ANDy6, ANDy8b, ANDylOa,

ANDyll, ORyrO : logic_vector_mv (2 downto 0) := "UUU";
signal ORy7 : logic_vector _mv (3 downto 0) := "UUUU";
signal ORY1l0 : logic_vector_mv (7 downto Q) := "UUUUUUUU";

signal CLEAR, SET : logic_mv := '0';

begin

gl: inverter
port map (Q0, QOnot);

g2: inverter
pert map (Q1, Qlnot);

g3: inverter
port map (Q2, Q2not);

g4: inverter

F.23

pert map (Q3, Q3not);
g5: inverter
port map (Q4, Q4not);
g6: inverter
port map (Q5, QSnot);
g7: inverter
port map (Q6, Q6fnot);
g8: inverter
port map (Q7, Q7not);
g9: inverter
port map (Q8, Q8not);
gl0: inverter
port map (Q9, QSnot);
gll: inverter
port map (Q10, Ql0not);
gl2: inverter
port map (Ql1, Qllnot):
gl3: inverter
port map (Q12, QlZ2not):
gl4: inverter
port map (QRO, QROnot);
gl5: inverter
port map (QIO, QIOnot);
glé: inverter
port map (INSTR2, INSTRZ2not):
gl7: inverter
port map (INSTR1l, INSTRlnot);
gl8: inverter
port map (INSTRO, INSTROnot);
gZFnot: inverter

port map (ZERO_FLAG, ZERO_FLAGnot);

- ———————————————————————_—————_— — " — . > T . 4t T~ A o T T —— T — - ——_ — —_——— i ————— ———

-- logic to decode LOAD instruction
-- LOAD = INSTR2not and INSTRlnot and INSTROnot;

ANDload <= INSTR2not & INSTRlnot & INSTROnot;

gLOAD: ANDm

F.24

port map (ANDload , LOAD);

-- logic to decode STORE instruction
-- STORE = INSTR2not and INSTR1lnot and INSTRO;

ANDstore <= INSTRZ2not & INSTRlnot & INSTRO;

gSTORE: ANDm
port map (ANDstore, STORE);

-- logic to decode ADD instruction
-- ADD = INSTR2not and INSTR1 and INSTROnot;

ANDadd <= INSTR2not & INSTR1 & INSTROnot;

gADD: ANDm
port map (ANDadd, ADD);

-- logic to decode AND instruction
—-—- AND = INSTRZnot and INSTR1l and INSTRO;

ANDand <= INSTR2not & INSTR1l & INSTRO;

gAND: ANDm
port map(ANDand, AND);

-- logic to decode JUMP instruction
-—- JJMP = INSTR2 and INSTRlnot and INSTROnot;

ANDjump <= INSTR2 & INSTRlnot & INSTROnot;

gJur.? : ANDm
port map(ANDjump, JUMP);

-= '0gic to decode JUMPZ instruction
-- ('MPZ = INSTR2 and INSTRlnot and INSTRO;

ANDjumpz <= INSTR2 & INSTRlnot & INSTRO;

gJur‘?Z : ANDm
port map(ANDjump, JUMPZ);

-- ogic to decode COMP instruction
-~ .OMP = INSTR2 and INSTRlnot and INSTROnot;

ANDcomp <= INSTR2 & INSTR1 & INSTROnot;

gCONM?: ANDm
port map(ANDcomp, CTOMP):

-- logic to decode RSHIFT instruction
-- RSHIFT = INSTR2 and INSTRlnot and INSTROnot;

ANDrshift <= INSTR2 & INSTR1 & INSTRO;

gRSHIFT: ANDm
port map(ANDrshift, RSHIFT);

F.25

-- Logic to derive YO
-- Y0 = g3 and gqRO and Qnot and ADD

ANDy0 <= Q3 & QRO & ADD;

gl9: ANDm
port map (ANDyO, YO0);

-- Logic to derive Y1
-- Y1 = Q3 and QRO and AND

ANDyl <= Q3 & QRO & AND;

g20: ANDm
port map (ANDyl, Y1);

-- Logic to derive Y2
-- Y2 = Q11 and COMP

ANDy2 <= Q11 & COMP;

g2l: ANDm
port map (ANDy2, Y2);

-- Logic to derive Y3
-— Y3 = [(LOAD or ADD or AND) and g7] or
-- [q10]
ORy3a <= LOAD & ADD & AND;
g2l: ORm .
port map (ORy3a, ORy3aout);

ANDy3 <= Q7 & ORy3aocut;

g22: ANDm
port map (ANDy3, ANDy3out);

ORy3b <= Q10 & ANDy3out;

g23: ORm
port map (ORy3b, Y3);

-~ Logic to derive Y4
-- Y4 = g5 and STORE

ANDy4 <= Q5 & STORE;

g24: ANDm
port map (ANDy4, Y4);

-- logic to derive ¥YS
-- Y5 = q7 and STORE

F.26

ANDyS <= Q7 & STORE;

g25: ANDm
port map(ANDyS5, YS);

-- logic to derive YIO
-- YI0 = g3 or (g4 and STORE)

ANDyiO <= Q4 & STORE;

g26: ANDm
port map (ANDyiO, ANDyiQout);

ORyi0O <= ANDyiOout & gq3;

g27: ORm
port map{(ORyi0O, YIO0);

-- Logic to derive Y6
-- Y6 = g3 and QRO and LOAD

ANDy6 <= Q3 & QRO & LOAD;

g28: ANDm
port map(ANDy6, Y6);

-- Logic to derive Y7
-- Y7 = (load or store or add or and) and gqll

ORy7 <= LOAD & STORE & ADD & AND;

g29: ORm
port map (ORy7, ORy7out):;

ANDy7 <= ORy7out & Q11;

g30: ANDm
port map (ANDy7, Y7);

-- Logic to derive Y8

-- Y8 = (qll and JUMP) or (qll and JUMPZ and ZERO_FLAGnot)

ANDyB8a <= Ql1 & JUMP;
ANDy8b <= Ql1 & JUMP2 & ZERO_FLAGnot;
ORy8 <= ANDyS8aout & ANDy8bout;

g31: ANDm
port map (ANDy8a, ANDy8aout);

g32: ANDm
port map (ANDy8b, ANDyS8bout);

g33: ORm
port map (ORyS8, Y8);

-- Logic to derive Y9

F.27

-- Y9 = g3 & Qnot
ANDy9 <= Q3 & QIOnot;

g34: ANDm
port map (ANDy9, Y9);

-- Logic to derive Y10
-- Y10 = (JUMPZ and Zero_Flagnot and Q11) or
- g6 or q0 or ql or (g4 and gIO) or ql2 or g3 or g8
ANDyl0a <= JUMPZ & ZERO_FLAGnot & Q11;
ANDyl10b <= Q4 & QIO;
ORY10 <= ANDyl0aout & ANDylObout & 06 & Q0 & Q1 & Q12 & Q3 & Q8;

g35: ANDm
port map (ANDylOa, ANDylOaout);

g36: ANDm
port map (ANDyl0b, ANDyl0bout) ;

g37: ORm
port map (ORY10, Y10);

-- Logic to derive Y11
-- Y11 = g3 and q9 and qI0

ANDyll <= Q3 & Q9 & QIO;

g38: ANDm
port map (ANDyll, Y11):;

-- Logic to derive Y12
~-=- Y12 = gll1 and rshift

ANDyl2 <= Q11 & RSHIFT;

g39: ANDm
port map (ANDyl2 , Y12);

-- Logic to derive YIO
-- YIO = g3 or (g4 and STORE)
ANDyi0 <= Q4 & STORE;

ORyi0 <= Q3 & ANDyilout;

g40: ANDm
port map (ANDyiO, ANDyiOout) ;

g4l: ORm
port map (ORyiO, YIO):;

-- Logic to derive YRO
-- YRO = g3 and (load or add or and)

ORyr0Q <= LOAD & ADD & AND;

F.28

g42: ORm

port map (ORyr0O, ORyrQOout):;

ANDyr(0 <= ORyrOout & Q3;

g43: ANDm

port map (ANDyrO,

YRO) ;

-- Registers:

FFO : D_ff

port map
FFl : D_ff

port map
FF2 : D_ff

port map
FF3 : D_ff

port map
FF4 : D_ff

port map
FF5 : D_ff

port map
FFé6 : D_ff

port map
FF7 : D_f£f

port map
FF8 : D_ff

port map
FF9 : D_ff

port map
FF10 : D_ff

port map
FFll : D_ff

port map
FFl2 : D_ff

port map
FFIO D_ff

port map
FFRO : D_ff

port map

YO,

Y1,

Yz,

Y3,

Y4,

Y5,

Y6,

Y7,

Y8,

Y9,

Y10,

Y11,

Y12,

YIO,

YRO,

Qo0,

Q1,

Q2,

Q3,

Q4,

Q5,

Q6,

Q7,

Q8,

Q9,

Q10,

Q11,

Qlz,

QI0,

QRO,

CLOCK,

CLOCK,

CLOCK,

CLOCK,

CLOCK,

CLOCK,

CLOCK,

CLOCK,

CLOCK,

CLOCK,

CLOCK,

CLOCK,

CLOCK,

CLOCK,

CLOCK,

CLEAR,

CLEAR,

CLEAR,

CLEAR,

CLEAR,

CLEAR,

CLEAR,

CLEAR,

CLEAR,

CLEAR,

F.29

CLEAR,

CLEAR,

CLEAR,

CLEAR,

CLEAR,

SET);

SET);

SET);

SET);

SET);

SET);

SET);

SET),

SET) ;

SET) ;

SET) ;

SET);

SET);

SET);

SET);

-—- SET UP INITIAL STATE:

when INTIALIZE select
Qinit <= "(000010000000000" when '1°’,
Qinit <= "22222222Z22222Z" when others;

Qo
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9

<= Qinit (
<= Qinit (
<= Qinit (
<= Qinit (
<= Qinit (
<= Qinit (
<= Qinit {
<= Qinit (
<= Qinit (
<= Qinit (

0);
1);
2);
3);
4);
5):
6);
7):
8);
9):

Q10 <= Qinit (10);
Qll <= Qinit (11);
Ql2 <= Qinit (12);
QIO <= Qinit (13);
QRO <= Qinit (14);

-- Drive outputs:

Control bus(0) <= QO0;
Control bus(1) <= Ql1;
Control bus(2) <= Q2;
Control bus(3) <= Q3;
Control _bus(4) <= Q4;
Control_bus(5) <= Q5;
Control bus(6) <= Q6;
Control bus(7) <= Q7;
Control bus(8) <= Q8;
Control bus(9) <= Q9;
Control bus(10) <= Q10;
Control bus(ll) <= Ql11;
Control bus(l2) <= Q12;

end STRUCTURAL;

F.30

The following VHDL code creates an incorrect controller response to the JUMPZ instruction.

This combinational logic code which derives Y10 (the input signal for D flip-flop FF10) was substituted

for the correct version in the controiler VHDL code to produce an incorrect controller version.

-- Logic to derive Y10

ERROR ERROR ERROR ERROR ERROR ERROR ERRCR ERROR ERROR ERROR ERROR
Y10 should be:
Y10 = (JUMPZ and Zero_Flag and Cll) or (c4 and gWRITEnot) or
c6 or c0 or ¢l or cl2 or ¢2 or c8
But instead it's:
Y10 = (JUMPZ and Zero_Flagnot and Cll) or (c4 and qWRITEnot) or
c6 or c0 or cl or cl2 or c2 or c8

ANDyl0a <= JUMPZ & ZERO_FLAGnot & C11;
ANDyl1l0b <= C4 & QWRITEnot;
ORY10 <= ANDylQaout & ANDylObout & C6 & CO & Cl1 & Cl2 & C2 & C8;

g35: ANDm

port map (ANDylOa, ANDylO0aout);

g36: ANDm

port map (ANDylOb, ANDylObout);

g37: ORm

port map (ORY10, Y10);

F.31

use work.BASICDEFS.all;

--use work.CPU_package.all;

use STD.SIMULATOR STANDARD.all;
use STD.TEXTIO.all;

entity TEST_BENCH is
end TEST_BENCH;
architecture structural CPU_588 of TEST_BENCH is

component CPU_CONTROLLER1
-- generic ();

port (INSTR2 : in logic_mv;
INSTR1 : in logic_mv;
INSTRO : in logic_mv;
c12 : inout wired outputs logic mv := 'U’;
C1i1 : inout wired_outputs logic_mv := 'U’';
C1l0 : inout wired outputs logic mv := 'U’';
Ccs : inout wired outputs logic_mv := 'U’;
c8 ¢ inout wired outputs logic_mv := 'U’;
c7 : inout wired outputs logic_mv := 'U’;
cé ¢ inout wired_outputs logic mv := 'U’;
CS : inout wired outputs logic mv := 'U’;
C4 : inout wired outputs logic_mv := 'U’';
C3 : inout wired outputs logic mv := 'U’;
c2 ¢ inout wired outputs logic_mv := 'U’;
C1l : inout wired outputs logic_mv := 'U';
co : inout wired outputs logic_mv := 'U";
CLOCK : in logic_mv;
ZERO_FLAG : in logic_mv;
INITIALIZE : in logic_mv

)
end component;

for UUT1 : CPU_CONTROLLER1l use
entity WORK.CPU_CONTROLLERI] (STRUCTURAL) ;
for UUT2 : CPU_CONTROLLER1 use
entity WORK.CPU_CONTROLLER1 (STRUCTURAL bogus);

signal INITIALIZE : logic_mv := 'U';
signal CLOCK : logic_mv := 'U';
signal Instruction : logic_mv_vector (2 downto 0);
signal Control good,
Control_bogus : logic_vector mv := "UUUUUUUUUUUUU";
begin
process
file CPU_INSTRUCTIONS : TEXT is in "CPU_INSTRUCTIONS";
variable L : Line;
variable temp instruction : bit_vector (4 downto 0);
variable temp2 instruction : bit_vector (4 downto 0);

F.32

begin

readline (CPU_INSTRUCTIONS, L);
if ENDFILE (CPU_INSTRUCTIONS) then terminate; end if;
read (L, temp_instruction);

case temp_instruction is
when '0' => Zero Flag <= '0’;
when '1l' => Zero Flag <= '1';
end case;

wait until Control good = "0000000001000";

case temp_instruction is
when "000" => instruction <= "000%;
when "001" => instruction <= "(001";
when "010%" => instruction <= "Q10";
when "011" => instruction <= "(011";
when "100" => instruction <= "100";
when "101" => instruction <= "101";
when "110" => instruction <= "110";
when "111" => instruction <= "1l117";
end case;
end process;

process
begin
set maximums (10000,100);
tracing_on;
wait for 1500ns;
terminate;
end pro~ess;

make_Clock : process
begin
wait for 2ns;
CLOCK <= 'Q';
wait for 4ns;
CLOCK <= '1"';
wait for 2ns;
end process make_Clock;

UuTi ¢ CPU_CONTROLLERI
port map(Instruction(2),

Instruction(l),

Instruction(0),

Control _good{12),
Control _good(ll),
Control_good(10),
Control_good(9),
Control_good(8),
Control good(7),
Control_good(6),
Control_good{(5),
Control_good(4),
Control_good(3),

F.33

Control _good(2),
Control good(1),
Control _good(0),
CLOCK,

ZERO_FLAG,
INITIALIZE

)

UuT2 : CPU_CONTROLLERI
port map(Instruction(2),

Instruction(l),
Instruction(0),
Control bogus(12),
Control_bogus(11),
Control bogus(10),
Control bogus(9),
Control bogus(8),
Control bogus(7),
Control bogus(6),
Control bogus(5),
Control bogus(4),
Control bogus(3),
Control_bogus(2),
Control bogus(1),
Control bogus(0),
CLOCK,
ZERO_FLAG,
INITIALIZE
):

end structural CPU_588;

o¥d

‘9K
IGX
‘X
‘X
1ZK
L1X
‘0X

:ann/ Teubrs 3o8TRS--
:ynny/ teubrs 3097196--—
:3nn/ Teubrs 309TIS-—-
:3nny/ Teubts 308795--
:3nn/ Teubis 309786--—
:ann/ Teubrs 308798 --
:ann/ Teubrs 3087198--

‘beT3 oxoz : Teubrs 3oaTes

{uorjonaisutr : Teubrs 308718sE

3001D : TeubBTIE 309T78S

{su ut 3uaAd Aq sTeubrs ordwes--
{su ut uorioesueil Aq sTeubrs ordures

{Te3juoztIOy €T 3IPWIOI Teubts

{0vy T yaibuar sbed
02T ST yapts sbed

/.886 NdD TRINn3oniis, €Y sweu j3rodsx

utbaq

§T §8G NdD TPINIonals 310dsx UOTILTNWTS

9b9€EBYLYIZ :B3IT3Q XENW
LOBSLLYSBIEOZLEEZTH :BWIL XBRW

3dx°ggg ndo Tean3onays : o1td andano jaoday
1ox'ndo :97TJ4d 9benbueT Toaxjzuol 33xodsy

6T PEI0T :dwrl uny
066T-50-d43dS :@3vQq uny
T :3I93T3U8PI uny
6T VPE:0T :DWTIL uotiesax) TB3UIadY
066T-G0-d3¥S :93eg UOTIEL3ID TLUId)
885 NdD TYMNIONYIS<<TVHALONYIS "ITTIWY>> :9uweN Areaqry [auey
w886 NdD TeIN3IonIls :aweN 3JIzodsy

3x0day uorl3eTnWIS TPUA

w885 NdD TeIN3IONIIS
I03eI2U39H 310d3Y TAHA

abenbueT TOox3U0D 33x0day

12:87:0T 0661-50-43§

F.35

(uoTloESURI] OU §33BOTPUT , ,) uorloesuexl Aq pajzrodax axe santea Teubrg
UoTIBTNWTIS FO pu¥ 03 SN O woxy st 3xodex 103 potaad swty
uoTIeTNWIS JO 3JIEeIS aY3l 03 IJATIE[SI SN Ut §T Bwty

¢ uotjewIxOojul 3Iewrog 3Ixoday

{885 Ndd TeInioniis pus

{snboq 1oa3uo) : Teubts 3o9T9s
{pooh 1o013u0) : TeubTs 30336
/aqvaNd :ann/ TeubIs 309196--—
HOLIAD :a3nn/ Teubis 30987196--
!9LTYMD :ann,/ Teubrs 309T796--
{5dIHSY :ann/ Teubrs 308798--
{AWOD :ann/ TeubTs 309T95--
{2300 tInn/ TeubTs 309798--
{GROL f3Inn/ TeubTs 309T86--
{9Y01S :ann/ Teubrts 309186--
{aNyg :3Inn/ Teubis 303796 --
‘agy :ann/ 1eubTs 3D9TIE-~-
QYo :ann/ Teubis 308798--
{Z1X 13ann/ Teubrs 300T196--
{1TX :3ann/ Teubts 308[96--
{0TX :3nn/ Teubts 309796--
!X 1ann/ Teubis 300T96--

{gx :ann/ Teubrs 309795--

{LX :ann/ Teubrs 308796--

4885 NdD TeIN3IONIIS
ovd 103e39uU8n 370dBY TAHA 1Z:8€:0T 0661-50-ddS

F.36

u000T000000000u «000T000000000u
«0000000T00C00. « 0000000100000 4
«00000000000104 u00000000000T0x
10, w000u
«000T00000T000u «000T00000T000u
«000T000000000u u000T000000000u
w2222222222222%. w22222222222%22%u
«0000000000T00u u0000000000100u
u XXX XX XXXXXX « u XXX XXXXXXXXXXy 10
u XXXXX XXX XXXXK u u XXX XXX XKXKXKXKXKXX u 0, «NNa

OINMOQ ZT) SN90E TOMINOD (0 OINMOQ ZT) Q009 TOYINOD OYTd O¥EZ (0 OLNMOQ Z) NOILONYISNI

4885 NdD TeIn3onias
9vd 103ex3uag Jxoday TAHA

T+
v
Z+
T+
8¢
T+ |
ve |
Z+
1+
(1%
1+
9Z
Z+
1+
A
1+
81
£+
Z+
1+
LA
1+
01
Z+
1+

F.37

T+

T+

T+

(SN)

............ | EWIL

TZ:8€:01 0661-50-4d3S

OINMOd ZT1)SN90E TOYINOD

o¥d

u00000000000T0w

«000T00000T000u

u000TO00000000u

u0000000000T00wu

«000000T000000m

«000T000000000u

2000000000000

«000T00000T000u

u000T000000000u

u0000000000T00.

«000000T000000u

u000T000000000wu

(0 OLNMOQ ZT)aoo9 TOMINOD

OYTL

(0)-§c ¥4

«88G NdD Teanioniis
103e12ula9 3Ix0oday TAHA

u000u

(0 OLNMOQ Z)NOILONYISNI

ve
T+
06
z+
T+
98
T+
z8
1
Z+
1+
8L
T+
vi
z+
1+
0L
T+
99
Z+
T+
Z9
T+
8§
z+
T+
1A
T+
0s
Z+
1+
9v

(SN)

o

TWIL

1Z:8€£:01 0661-50~-43S

F.38

s000T1000001T000a

«000T000000000u

»0000000000T004

«000000T000000u

u000T0000000004

«000T0000000004u

«0000000T000004

ovd

«000T00000T000u

«u000T000000000wu

«000000000QT00w

u000000T000000u

«000T000000000wu

u000T000000000wu

u0000000T00000u

OINMOA ZT)SNS0d TOMINOD (0 OINMOQ ZT)ao0D TOYINOD

u88S NdD TeInadniis
z03R13U8H 3I10d3Y IAHA

O¥Td O™dZ (0 OLNMOQ Z) NOILOAYISNI

Z+
T+
vl
T+
BET
2+
T+
VET
1+
0ET
Z+
T+
921
+
221
Z+
T+
811
T+
AR
Z+
T+
01T
I+
90T
Z+
T+
201
T+
86
Z+
1+

(SN)

JWIL

1Z:8€:01 0661-50-43S

F.39

OINMOAd ZT)SN90€d TOMINOD

ovd

u0000000000T004

u1000000000000u

«000T0000000004

w000T000000000u

«0000000T00000u

«00000000000T0w

u0000000000T00.

uT0000000000004

«u000T000000000.

u000T000000000u

«0000000T00000u

w0000000000010u

(0 OILNMOQ ZT)QOO09 "TOYINOD

-O-

OWId O¥dZ

«88G6 NdD teanionias
103eI9UdH IT0daY TQHA

u0

(0 oLNmMOa 2

-‘ﬂ-
104
-.H-
10
-H-
-o-
-‘ﬂ-
100
-.H-
-o-
T
-O-

T10u

) NOILONYISNI AOO1ID

veT
Z+
T+
06T
T+
981
Z+
T+
281
I+
8LT
z+
T+
VLt
T+
oLt
z+
1+
991
1+
91
z+
4
8S1
T+
AN
z+
T+
0s1
1+
9vI
£+

(SN)

dN: L

1Z:8€:01 0661-G0-4d3S

F.40

OILNMOA ZT)SN90d TOMINOD

ov4a

«000T0000000004

u000T000000000u

«0000000T00000u

u0000000000010u

«000T00000T000u

s000T0000000004

(0 O1NMOQ

«000T000000000u

«000T0000000004

«0000000T00000wu

u00000000000T0u

w000T00000T000u

u000T000000000u

||||| mem==STWYN TYNIIS——m—mmmmm

«88S NdD TeInionias

Z1) 009 "TOMINOD

z03eI’3Uad9 3xoday TAHA

OYId O¥dZ

(0 OILNMOQ Z)NOILDNYISNI

uwlTlOu

-o-

-H-

T+
Zve
Z+
T+
8¢
T+
vee
z+
T+
0ee
T+
9z
z+
T+
zze
T+
812
Z+
T+
L A%4
T+
o1eZ
€+
Z+
T+
902
T+
zoz
Z+
T+
861
1+

(SN)

JWIL

1Z:8E:0T 0661-50-44S

F.41

OILNMOQ ZT)SN90d TOMINOD

ov¥d

«0000000T000004

«00000000000TOx

u000T00000T000u

«w000T000000000u

«0000000000T00.

«0T00000000000

u0000000T00000u

»00000000000T0x

w000T00000TO000K

u000T000000000u

«0000000000T00.

u01000000000004

(0 OINMOAQ ZT)dOO09 TOYINOD

«88S NJdO Tean3iodonias
I03ea12uan 310d3aY TAHA

OYId OdAZ

ul00u

(0 OLNMOQ Z) ROIZONYISNI

MAD0T1O

vezZ
1+
062
Z+
T+
982
T+
[4:X4
Z+
1+
8LZ
1+
vLZ
£+
Z+
T+
0L
T+
992
Z+
I+
292
T+
862
Z+
T+
vsZ
T+
052
Z+
T+
9vez

(SN)

dWIL

IZ:8€:0T 0661-50-43S

F.42

OILNMOd ZT)SND04 TOMINOD

o¥d

w000T00000T000u

«000T0000000004

u0000000000T00u

«0000T00000000u

«0000T000000004u

«00000T00000004

u000T00000T000u

u000T000000000u

«0000000000T004

w0000T00000000m

u0000T00000000u

w00000T0000000x

(0 OILNMOQ ZT) Q009 TOYINOD

¢ 0. u00Ta

oYl OddZ

«886 NdJ TeInionIas
103e33Uadn Ix0day TAHA

(0 OLNMOQ Z) NOIZONYLISNI

I T+
| zZve
I 1+
| 8EE
| €+
| 2+
b1+
| veg
I 14
] 0EE
| Z+
[
I 9z¢
I 1+
1 zzZg
| zZ+
I 1+
| 81¢
104 | T+
I vig
I Z+
| 1+
| 01¢
I 1+
| 90¢
b z+
I 1+
I zZog
I 1+
| 86¢
I z+
1+
|
|
|
]

(sN)

TNIL

1Z2:8€:01 0661-50-43S

F.43

OINMOQ ZT)SN90d TOYINOD

ovd

w00000000T0T00.

«00000000000T0a

«000T00000T000u

w000T0000000004

«0000000000T00w

«00000000T0000w

u00000000000104

«00000000T00004u

«00000000000104

«000T00000T0COm

u000T000000000u

«0000000000T0Cu

«00000000T0000m

«00000000000T0w

(0 OINMOA ZT1)dOO9 TOYINOD

«885 NdD TeIn3oniae
I03eI8Uadn 3Izoday IQHA

OWTd OHdZ

wI0Tu

(0 OLNMOQ Z)NOILDONYISNI

Z+
T+
06¢€
1+
98¢
Z+
T+
(413
T+
8LE
£+
Z+
T+
vLE
T+
oLE
Z+
T+
99¢
1+
Z9¢
Z+
T+
8GE
I+
vSE
Z+
T+
0s¢e
T+
grve
Z+

(SN)

dNIL

TZ:8€-0T 0661-50-4ddS

F.44

OINMOQ ZT)SN90d TOMINOD

ovd

«000T000000000u

«0000000000T00 .

«00T0000000000u

«00000000000T0.

«000T00000T000u

«000T000000T00u

«00000000001T00.

u00T0000000000u

«00000000000T0w

«000T00000T000wu

«000T0000000004u

«0000000000T00w

(0 OINMOQ ZT1)dOoO09 TOMINOD

10

OwId Q¥dz

w885 NdD TeIN3IONIIE
103RI3UIH 33x10d8Y TIQHA

(0 OLNMOQ Z) NOILONHISNI

u0ITwu

T

—o-

T

444
T+
T+
8EY
T+
vEY
+
T+
oer
T+
XA
+
1+
zzy
T+
R84
£+
Z+
T+
1284
T+
otv
T+
T+
sov
T+
zor
T+
T+
86¢
T+
veE

(SN)

TAIL

1Z2:8C-0T 0661-50-43S

F.45

OLNMOQ ZT1) SNO0L TOMINOD

ov4a

u000T00000T000wu

«000T0000000004u

«00000000001004

«000000000000Tw

«00000000000T0wu

w000T00000T000.

(0 OINMOQ

»000T000000000u

«0000000000100w

«000000000000Twu

«00000000000TQu

«u000T00000T000u

«000T0000000004

w885 NdD TeInioniis
x03e19uUd9 310daY IAHA

Z1) G009 TOMINOD

ovw1d o¥dz

wllla

(0 OLNMOAQ Z)NOIIONYISNI

-O-

-ﬂ-

-o-

T+
o6V
Z+
T+
98V
T+
z8y
Z+
T+
8LY
1+
LY
T+
T+
oLY
1+
99Y
Z+
T+
9%
T+
8sy
£+
Z+
T+
1434
T+
osy
Z+
T+
144
T+

(SN)

dWIL

1Z:8€£:01 0661-50-43S

F.46

OINMOd ZT)SNO0d TOMINOD

ovd

u0000000000100u

«000000T000000«

«00010000000004

«0001000000000u

«0000000100000w

«00000000000T0u

0000001000000

«000T0000000004

«000T0000000004u

«00000001000004u

«00000000000T0w

«w000T00000TO000.

(0 OINMOd ZT)doO9 TOYINOD

104 w0004

OYId Od¥dZ (0 OILNMOQ Z)NOILONWISNI

«886 NdD TeINn3dNIle
I03ex3uldn 3Ix0daY TGHA

Zvs
1+
8ES
c+
1+
veS
1+
0es
Z+
T+
92§
I+
rAA
2+
T+
81&
T+
v1s
Z+
T+
018
T+
90S
Z+
1+
Z20s
T+
86V
£+
Z+
1+
vev

MO0TO (sN)

———mmmmmeee | aWIL

1Z°8€:0T 0661-50-4d3S

F.47

«w0000T00000000u

«0000010000000«

«0000000T00C "uw

«00000000000104

»000T00000T000u

«000T0000000004

OINMOd ZT) SNO09 TOMINOD

ova

10
u00000T0000000u

-.ﬁ-

104
«0000000T(J000u

-ﬁ-

104
«00000000000T0w

1 T

10

104 uT00w

w000T00000T000u

T

104
«000T0000000004

1 T

104
«0000000000T00w

T

(0 OLNMOQ ZT) Q009 TO¥INOD OVId O¥dZ (0 OINMOQ Z) NOILONYISNI AD0IO

«88G NdD TEIN3IONIIE

i+
06S
T+
98§
Z+
1+
Z8s
T+
8LS
z+
T+
vLS
T+
0LS
z+
T+
93¢
T+
29§
£+
Z+
T+
8SS
1+
143
z+
1+
0SS
T+
9vs
Z+
T+

(SN)

TANIL

z03vI0udn 3Jx0ded TAHA 1Z:8£:0T 0661-50-ddS

F.48

OINMOQ ZT)SNS0E TO¥INOD (0 OLNMOA ZT)dOOD TOMINOD OVYId OudZ (0 OINMOA Z)NOIIDNUISNI NOOTO

u000T000000000. «0000000T00000u !
T !

!

+ 0. |

|

»0000000T000004 «00000000000TOw |
Ty I

|

104 |

!

¢0. «0T0u |

«00000000000T04 «000T00000T000 |
-ﬁ- _

I

-o- —

|

«000100000T000u «000T0000000004 |
1 T |

{

104 |

!

«000T000000000u «00000000001004 I
-ﬁ- —

i

104 |

I

2 0000000000100 «w0000T000000004 |
.ﬂ- _

|

-o- _

|

«00001000000004« «0000T00000000u |
|

|

I

|

———— e e e SAWYN TUNO IS m == mmmmm e e e — e ——————

w886 NdD TBIN3ONIIE
ovd z03eaU9n 3x0d9Y TAHA

T+
T+
8€9
1+
veo9
z+
1+
0e9
T+
929
€+
z+
T+
229
1+
819
z+
1+
vi9
T+
019
z+
1+
909
T+
z09
z+
T+
865G
T+
v6S
Z+

(sN)

dNRIL

1Z2:8€:0T 0661-S0-33S

F.49

OLNMOQ ZT)SNO0d "10¥INOD

ovd

«00000000000TOw

«000T00000T000.

w000T0000000004

«0000000000TO0.

«T1000000000000u

«000T0000000004

«000T00000T0004

«000T000000000.

«0000000000T004

«T10000000000004

4000T000000000u

»00010000000004

(0 OINMOQ ZT)A0OD TOMINOD

owId OudZ

»88G NdD TeIN3IdONIIE
I03RI8UIH 3310daU TAHA

1T

Ou

(0 OILNMOQ Z) NOILONMISNI

-ﬂ-

.o-

.H-

-o-

1 T

-o-

-.ﬂ-

-o-

ADO0T

o)

069
€+
z+
1+
989
1+
Z89
Z+
T+
8L9
T+
vL9
zZ+
T+
oLS
T+
999
T+
T+
299
T+
869
z+
1+
vs9
T+
0s9
zZ+
T+
99
T+
Zv9

(sN)

aANRIL

1Z:8E:0T 0661-50-4d2S

F.50

«000T000000000 «0000000000TCOw

veEL
I+

«0000000000T00u «0T00000000000u

Z+
1+
9ZL
T+
2L

I

|

|

|

I

1

|

1 0€L
!

|

!

|

|

¥ 2+

«0T1000000000004u «000T000000000a
I T+
I 1L
| T+
| | A YA
| Z+
I T+
[oTL
I T+
| 90L
I Z+

W T | I+
|
|
|
|
|
l
[
|
|
|

F.51

«C001000000000. «00010000000004

«000T000000000u «0000000T00000u

0L
1+
869
Z+
T+
v69
1+

«0000000T00000« «00000000000T0.

OINMOG ZT)SN90d TOYINOD (0 OINMOQ ZT) Q009 TOMINOD OV¥Id O¥dZ (0 OHZZOQ Z) NOILONMISNI MO0T1O (SN)

i T TR ~===SHWYN TUNOIS==—m===mmm—mmmm ——————————— e R | EWIL

«88G NdD TeIN3IONI1IS
ovd x03eI9Uld9 3x0daW TAHA 1Z:0E:0T 066T-S0-43S

OINMOd ZT) SN90d TOMINOD

) £- 1

«000T00000T10004

«000T000000000.

«0000000000T00u

«00000000100004

«00000000000T0wu

«000T00000T0004u

«000T1000000000u

«0000000000T00m

«00000000T0000u

«00000000000T0w

«0001000001000w

«000T000000000u

(0 OINMOQ ZT) 4009 TOUINOD

«88G6 NdD Tein3oniis
1o3exsuan 3xodsy TAHA

OVY1d Ov¥dZ

w00Ta

(0 OILNMOGQ Z) NOIIDNYISNI

-ﬂ-

p to. 04 00)

————————— e SHWYN TYNDIS~mmmmmmm o m—m e e e e e e m e — e — - —————

|
|
|
|
|
|
|
]
|
I
I
|
I
|
|
|
|
[
|
|
i
|
|
]
|
|
i
|
|
|
I
|
]
!
!
|

T+
06L
T+
98L
Z+
T+
Z8L
T+
8LL
z+
T+
vLL
T+
oLt
z+
T+
99¢L
1+
oL
z+
1+
8SL
T+
¥YSL
£+
z+
T+
0s¢L
T+
VL
z+
T+

(SN)

INIL

IZ-8£:01 0661-S0-4ddS

F.52

OINMOA ZT) SNO0d TONINOD

ova

«00000000T0T00u

«00000000000T0x

4«000T0CO00TO000.

«000T0000001T00u

«00000000TOTO0M

«00000000000T0u

104 w0TTa
«000T00000T000u

«000T0000000004u

«00000000001T00wu

«00000000T00004

«00000000000T0u

10, ulOTa
»000T000001000a

(0 OINMOQ ZT) Q00D TOMINOD OVId O¥3Z (0 OINMOQ Z)NOILONYISNI

«88S5 N4 Teanionzas
Ix03e13usn 310dad TQHA

-.H-

«0.

T+
ges
T+
ves
£+
Z+
T+
0€s
T+
928
Z+
T+
(44
T+
818
Z+
T+
vis
T+
ote
4+
T+
908
i+
cos8
Z+
T+
86L
T+
veL
£+
Z+

(8N)

dNIL

1Z:8€:07 0661-50-4d3S

F.53

«000100000T0004u

«00010000000004

«w0000000000100u

«00T00000000004

«00000000000T0u

«000T000001T000

«000T000000T00u

u000000000000Tu

«0000000000010u

«000T00000TO000 .

«000T0000000004u

«0000000000T00u

«00T0000000000u

«00000000000T0x

T

ullTas

Z+
T+
988
T+
Z88
Z+
T+
8L8
T+
vis
€+
Z+
T+
oLs
T+
998
Z+
1+
298
T+
8568
z+
T+
vs8
T+
0s8
Z+
T+
9vs
1+
Zve
Z+

F.54

OLNMOQd ZT)SN90€ TOMINOD (0 OLNMOQ ZT1) Q009 TO¥INOD OVId OudZ (0 OLNMOAQ Z)NOIIONMISNI NO01O

|
I
I
[
|
|
!
|
|
I
I
i
|
|
I
!
I
!
|
!
|
|
|
|
l
|
i
|
|
!
|
!
I
I (sN)
I

|

T T TET ————— —————- SAWYN TUNODIS == mmm e m e e ot e e e e e e

TIRIL

«886 NdD TeInioNnIzE

ova I03e19u8n 320day TAHA 1Z:8€:0T 0661-50-43S

s0000000000010wu

«000T100000T000w

«0001000000000u

u0000000000100u

« 0000000000001

40000000000010wu

OINMOQ ZT)SNDOd TOMINOD

ova

v000T000000000wu

«0000000T00000u

»00000000000T0u

v000T00000T000u

u00010000000004

«0000000000T00u

OINMOAd ZT)dOOD TOMINOD

mm = ==GAWYN TYNIIS == e e e e e e e ————

| 8¢€6
I Z+
[1+
| bE6
I 1+
I 0¢€6
| z+
I T+
| 926
| T+
| ¢Z6
I zZ+
I 1+
| 816
I T+
| %16
1 T u000a I £+
| Z+
T | 1+
1 016
I T+
| 906
| z+
I 1+
| 206
[, €
| 868
l Z+
I 1+
| veés
[
| 068
|
OwId O¥dZ (0 OINMOQ Z) NOILONMISNI |
|
|

AND0TO (SN)

dNIL

w886 NdD TeInidnils

z03RI3uds 3310day TAHA

T1Z:8E:0T 0661-50-43S

F.55

OINMOQ ZT) SN90d TOMINOD

ovd

«000T000000000u

«0000000000T00a

«000000T000000u

«000T0000000004

s000T000000000

«0000000T00000u

«00000000000T0u

4w000T00000T000.

u000T000000000

w0000000000T00u

2 000000T000000u

w000T000000000u

(0 OINMOA ZT)aooo TOMINOD

OVTd O¥aZ

w885 NdD Tean3ionzas
x03erdusn 3Ix0day TTAHA

wT00u

(0 OLNMOA Z)NOILONWISNI

i T

104

10

1T

— e e e e o . TEE e e - e . E—— T S . —— i —— — — — — — — — —— — —— —

T+
986
z+
1+
286
T+
8L6
€+
z+
1+
vi6
I+
oLe
z+
I+
996
T+
296
Z+
T+
856
T+
vsé6
(4
T+
0S6
1+
9r6
z+
T+
443
T+

F.56

(SN)

dNIL

1Z:8€:0T 066T1-50-43S

OLNMOd ZT)SN90€E TOMINOD

ovd

w0000T000000004u

«0000T00000000.

«00000T00000004

«0000000T00000u

«w00000000000T0w

«000T00000T0004u

u000T000000000u

20000000000T00u

«0000T00000000u

«0000T00000000u

«0000010000000u

u0000000T00000u

(0 OINMOd ZT)dOOD TOMINOD

oW1d oo

«88G Q4D TeIN3IONIIE
z03R1I3U3H 3x0day TAHA

e T

a2z (0 OILNMOQ Z)NCILONWISNI

1+
BEOT
T+
veot
Z+
T+
ogoT
T+
9Z01
z+
T+
2201
T+
8101
Z+
1+
LALIAS
T+
oT0T
4
T+
9001
1+
00T
z+
1+
866
T+
v66
Z+
1+
066

(SN)

JWIL

TZ:8E€:0T 0661-50-4d3S

F.57

OINMOA ZT1)SN90d TOYINOD

¥4

u000T000000000u

«000T000000000u

«0000000100000u

«00000000000T0wu

w000T000001000u

40001000000000u

v0000000000T00u

«0000000000T00u

uT000000000000u

u000T000000000u

w000T000000000u

«0000700T00000u

«00000000000T0u

«000T00000T000u

(0 OILNMOA ZT)Ao0oD TOYINOD

w885 NdO TeIn3oniie
I03eI8Udy 3310d3Y TAHA

-H-

OVId OydzZ

u0T0w

(0 OINMOG Z) NOILONMISNI

10,

1 Ty

-o-

-o.

AD07T1O

“STWYN TYND IS = == m o e o e e s o e e e e

TZ:8£:0T 0661-S0-43S

|
[
|
|
i
|
!
I
!
|
!
|
i
!
I
I
!
|
[
|
[
!
!
|
|
f
i
|
|
I
I
{
!
|
!
J

Z+
T+
980T
1+
2801
Z+
I+
8L0T
T+
VLot
Z+
T+
oL0T
T+
9901
Z+
T+
2901
1+
8501
c+
T+
¥S01
T+
0Ss0T
c+
T+
9v01
T+
Zvort
£+
T+

(SN)

IWIL

F.58

OINMOd Z1)SNO0d TOYINOD

ovd

w0000000T000004u

«0000000000010w

«000T00000T000u

w000T000000000u

«0000000000T00u

«T000000000000a

(0 Oo1NMOQ

«w000T000000000u

«000T0000000004u

+0000000T00000u

«0000000000010u

w000T00000T000u

w0001000000000Qu

Z1) Q009 TOYINOD

OvY1d OudZ

w885 NdD TeaInionais
103eI3Ud5 310dadY TAHA

ullQu

(0 OLNMOQ Z)NOILONYISNI

-H.

1Z2:8€£:01 0661-G0-43S

BETT
z+
T+
PETT
T+
oett
z+
T+
9z11
T+
XA
Z+
T+
8ITT
1+
vitl
z+
1+
9111
1+
9011
£+
Z+
T+
2011
1+
8601
Z+
T+
¥60T
1+
0601

(SN)

IWIL

F.59

u000T00000T000u

«000T000000000m

«0000000000T00u

«w0T100000000000u

w000T000000000wu

«000T000000000u

OINMOAd ZT)SNH0d TOYINOD

ov¥d

«00000000100004u

«00000000000T0u

«000T00000T000M

w0001000000000wu

«0000000000100u

u0T00000000000u

(0 OINMOA ZT)dOO9 TTOMINOD O¥Id OuEZ

w88S NdD Tean3joniaas
103easuan 33xoday TTAHA

u00Te

(0 OLNMOQ Z)NOILONYWLSNI

I T+

| 9811
I Z+

I 1+

| 2811
| T+

I 8LIT
I Z+

I 1+

I vLTY
I 1+

| oLIY
| €+

| Z+

I T+

| 9917
| 1+

| 2911
I z+

I T+

| 8GT1T
I T+

| bG1T
| Z+

I T+

| 0STT
I 1+

I 9vTT
I Z+

I 1+

| Zvit
I T+

l

|

|

|

-o-

-H-
10
MD01D (SN)

IWIL

TZ:8€:0T 0661-S0-4d3S

F.60

«0000000000010u

«000100000T000w

w000T000000000w

w0000000000T00a

«00000000T00004u

«00000000000T0«

OLNMOd ZT)SN9D0d TOYINOD

(0 OINMOQ

4000T000000000u

+«00000000001004u

«00000000000104u

w000T00000T000u

w000T000000000wu

u00000000001004

Z1) Q009 TOYINOD

OYId ONAZ

w8856 NdD TeIn3joniys

103ea3u39 3r0ddW TAHA

_O-
T
104
' T
-o-
-H-
-o-
wI0Tu
-.ﬁ-
.O-
-ﬂ-
.o.
e T
(0 OINMOQ Z) NOIXLOAMISNI MO0T1D

TZ:BE:0T 0661-50-4dS

8ect
1+
veet
z+
T+
oezt
1+
9zzt
z+
T+
zzen
T+
8121
Z+
T+
L ALAS
1+
012t
£+
zZ+
T+
9021
T+
[AA
Z+
1+
8611
1+
Y61t
z+
1+
0611

(SN)

dNIL

F.61

The following two files reflect the Unix script file and its resuits which automatically processed

the two cpu VHDL files invoking pre_verif and verif.

date

time steed -vhdl -enum cpu_588s.vhd

time mv verif.input cpu_588s.verif

time steed -vhdl -enum cpu 588s_bogus.vhd

time mv verif.input cpu_588s bogus.verif

time /olympus3/eng/rlmiller/verif/verif cpu 588s.verif cpu_588s_bogus.verif

date

olympus> !cpu
cpu_588 verif timer > timerstuff

Tues Oct 30 10:34:55 EDT 1990

steed -vhdl -enum cpu_588s.vhd
#Circuit Summary:

Entity name : CPU_CONTROLLER1
Architecture : STRUCTURAL
$ommm

#number of gates = 42
#number of wires = 62
#number of inputs = 4
#number of outputs = 13
#number of latches = 16

#steed: cputime for reading in circuit: 0.3s 0.3s
#steed: cputime for levelling circuit: 0.0s 0.4s
#steed: cputime for rearranging gate inputs: 0.0s 0.4s
#steed: cputime for creating dummy gates: 0.0s 0.4s
#number of equivalent faults = 190
#steed: cputime for generating fault list: C.0s 0.4s
#steed: cputime for miscellaneous allocation: 0.0s 0.4s
#Memory required for all covers = 438.000000 bytes
#steed: cputime for generating the partial covers : 0.5s 0.9s
#steed: cputime for all processes: 0.0s 0.9s
OUTPUT PRODUCED IN FILE verif.input

1.6 real 0.9 user 0.4 sys

0.1 real 0.0 user 0.0 sys

steed -vhdl -enum cpu_588s_bogus.vhd
#Circuit Summary:

Entity name : CPU_CONTROLLER1

Architecture : STRUCTURAL bogus

F.62

#number of gates = 42
#number of wires = 62
#number of inputs = 4
#number of outputs = 13
#number of latches = 16

#steed: cputime for reading in circuit: 0.4s 0.4s
¥#steed: cputime for levelling circuit: 0.0s 0.4s
#steed: cputime for rearranging gate inputs: 0.0s 0.4s
#steed: cputime for creating dummy gates: 0.0s 0.4s
¥number of equivalent faults = 190

#steed: cputime for generating fault list: 0.0s 0.4s
#steed: cputime for miscellaneous allocation: 0.0s 0.4s
#Memory required for all covers = 438.000000 bytes
#steed: cputime for generating the partial covers : 0.5s 0.9s
#steed: cputime for all processes: 0.0s 0.9s

OUTPUT PRODUCED IN FILE verif.input

1.6 real 0.9 user 0.5 sys
0.1 real 0.0 user 0.0 sys

Machine 1 inputs 4 outputs 13 latches 16
Machine 2 inputs 4 outputs 13 latches 16
#Time to read in covers : 8.800000e-01 secs
#MACHINES ARE DIFFERENT

#THE DISTINGUISHING SEQUENCE IS

__1_

Number of states = 15
Number of edges = 36
Number of entries = 9
Number of save difs = 0
#Time for verification
#Total user time

3.300000e-01 secs
1.210000e+00 secs

.
.
.

Tues Oct 30 10:35:04 EDT 1990

olympus>

F.63

The following two files reflect the unix script file and its result which automatically invoked the VHDL

software support environment in order to process the cpu VHDL files through the VHDL simulator.

mg "cpu_controllerl (structural)”

cpu 588 cpu.rcl

date

time vhdl cpu_588s.vhd
time

time vhdl cpu_588s_bogus.vhd
time

time vhdl testbench_cpu
time

time

time sim structural cpu_ 588
time rg structural_

date

atlas% cpu_588_timer
Wed Sep 5 10:09:53 EDT 1990

Standard VHDL 1076
Copyright (C) 1990

73.6 real
Standard VHDL 1076
Copyright (C) 1990

554.7 real
Standard VHDL 1076
Copyright (C) 1990

58.4 real
Standard VHDL 1076
Copyright (C) 1990

505.8 real
Standard VHDL 1076
Copyright (C) 1990

57.3 real
Standard VHDL 1076
Copyright (C) 1990

135.1 real
Standard VHDL 1076

Support Environment
Intermetrics, Inc.

46.2 user
Support Environment
Intermetrics, Inc.

452.7 user
Support Environment
Intermetrics, Inc.

38.7 user
Support Environment
Intermetrics, Inc.

445.5 user
Support Environment
Intermetrics, Inc.

30.6 user
Support Environment
Intermetrics, Inc.

97.9 user
Support Environment

mg "“cpu_controllerl (structural bogus)"

mg -top "test bench(structural cpu 588)"

build -replace "“test_bench(structural cpu 588)"

Version 2.1 - 1 February
All rights reserved.

6.2 sys
Version 2.1 - 1 February
All rights reserved.

30.8 sys
Version 2.1 - 1 February
All rights reserved.

5.0 sys
Version 2.1 - 1 February
All rights reserved.

24.1 sys
Version 2.1 -~ 1 February
All rights reserved.

6.1 sys
Version 2.1 - 1 February
All rights reserved.

8.7 sys
Version 2.1 - 1 February

F.64

1990

1990

1990

1990

1590

1990

1990

]

Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

62.4 real 28.6 user 9.3 sys
Standard VHDL 1076 Support Environment Version 2.1 - 1 February 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

$VHDSIM-N-SIGTRAN Signal Tracing turned on
$VHDSIM-N-SIGTRAN Signal Tracing turned on after 0 fs

$VHDSIM-N-TRANSOV Transaction Limit Exceeded after 350 ns
$VHDSIM-N-TERMINA Explicit Termination requested after 1238 ns
205.0 real 180.3 user 5.5 sys
Standard VHDL 1076 Support Environment Version 2.1 - 1 February 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.
55.9 real 39.2 user 11.3 sys

Wed Sep 5 10:38:32 EDT 1990
atlas$

F.65

10.

Bibliography

Advanced Tactical Fighter Special Program Office, Aeronautical Systems Division, Air Force
Systems Command. Contract F33657/2040-2-A with ZYCAD Corporation. Wright-
Patterson AFB OH, February 1990.

Department of Defense, "Joint Integrated Avionics Plan for New Aircraft,” Industry Copy,
prepared under direction of Office of the Under Secretary of Defense Acquisition, March
19889.

Z. Kohavi, Switching and Finite Automata Theory, Second Edition. New York, McGraw Hill
Book Company, 1978.

T. Booth, Sequential Machines and Automata Theory. New York, Wiley and Sons, Inc,
1967.

D. Barton, "Examples of Formalty Verified Circuits,” in Proc, 1990 VHDL Users' Group Fall
Meesting, IEEE Press, October, 1990.

A. Ghosh and others, "Verification of Interacting Sequential Circuits,” Unpublished
Manuscript, University of Califomia, Berkeley, 1989.

S. Devadas, H-K. T. Ma, and A. R. Newton. "On the Verification of Sequential Machines at
Differing Levels of Abstraction,” /EEE Transactions on CAD, Vol 7, No. 6, |EEE Press,
June 1988.

T. J. Wagner, "Verification of Hardware Designs through Symbolic Manipulation,” in Proc.
Design Automation and Microprocessors Symposium, (Palo-Alto, Califomnia), |IEEE Press,

February 1977.

K. J. Supowit and S. J. Friedman, "A new method for veritying sequential circuits,” in Proc,
239 Design Automation Conf., |EEE Press, June 1986.

J. R. Burch and others, "Sequential Circuit Verification Using Symbolic Model Checking," In
Proceedings of Design Automation Conf,, IEEE Press, 1980.

Bib.1

11.

12.

13.

14,

15.

16.

17.

18.

19.

20.

21.

B. Moszkowski, "A Temporal Logic for Multilevel Reasoning about Hardware.” /ELCE
Computer, IEEE Press, February 1985.

M. C. Browne and others, "Automatic Verification of Sequential Circuits Using Temporal
Logic,” IEEE Trans. on Computers, Vol C-35, No. 12, |IEEE Press, December 1986.

S. Kimura and E. M. Clarke, "A Parallel Algorithm for Constructing Binary Decision
Diagrams,” Unpublished Manuscript, Camegie-Mellon University, undated.

M. C. Browne and others, "CSML Language Reference, " Unpublished Manuscript,
Carmnegie-Mellon University, May 1989.

J. R. Armstrong, Chip-Level Modeling with VHDL. Englewood Cliffs, New Jersey, Prentice
Hall, 1989.

IEEE, Computer Society Standards Committee, /EEE Standard VHDL Language
Reference Manual, ANSVIEEE Std 1076-1987 IEEE Press, New York, New York, 1988.

E. M. Clarke and others, "A Language for Compositional Specification and Verification of
Finite State Hardware Controllers, " CMU-CS-89-110, Dept. of Computer Science,

Camegie-Mellon University, January 1989.

D. Barton, "Examples of Formally Verified Circuits,” in Proc, 1989 VHDL Users’ Group Fall
Meeting, IEEE Press, October, 1989.

ExpressVHDL. Company Brochure, i-Logix Inc., Burlington, Massachusetts, 1990.

R. Lipsett and others, VHDL: Hardware Description and Design. Massachussetts: Kluwer
Academic Publishers, 1989.

ZYCAD VHDL Users's Manual, Revision 2.0a, Federal Services Group,
ZYCAD Corporation, Mount Olive, New Jersey, 1990.

J. P. Hayes, Computer Architecture and Organization (Second Edition). New York: McGraw
Hill Book Company, 1988.

Bib.2

23. , Joint Integrated Avionics Working Group TM_bus (JTM-bus) Specification
DOCUMENT J839-N1B, CAB lll REV 1/30, April 1990.

Bib.3

Vita

Captain Richard L. Miller GHEREEEENNNNSARSo. Ho graduated

from high school in Burton, Chio, June 1974, and entered the Air Force as an Avionics Navigation

Systems Specialist in December 1977. In December, 1984 he received a Bachelor of Electrical
Engineering degree from Aubum University, Aubumn, Alabama through the Air Force's Airman
Education and Comissioning Program. He received his comission upon completion of Officer
Training School in April, 1985. From May, 1985 until June, 1989, he served first as a
microelectronics design engineer and then as executive officer for the Avionics Laboratory,
Wright Research and Development Center, Aeronautical System's Division, Wright-Patterson

AFB. He entered the School of Engineering, Air Force Institute of Technology in June, 1989.

Vita.1

(

- P
e e e -

- SPECIFICATION AND EQUIVALENCE VALIDATION
- OF SEQUENTIAL CIRCUITS VIA VHDL.

REPORT

L G T

Sy AU TSIy

RDOCUMENTATION PAGE

form Fgptgivaedd
CIRARE Dy QTR ki

.
Lot

O f)"[.? HEPORT DATY
R — ~——~»-December~1990~—~~-J~-~—vMuter~’a—’Phoqi=

B FUNDING NURABERS

e B P I
HE IR N YU VR LR

R A Pt T N T P

RN STE N FEX

S te e M oo 0 e, gy

cnoidh)

Richard L. Miller, Capt, USAF

m———

3 REPORT TYPE AN DATE

9 COVERLD

Lo LAl GHGAHIZA O NRAT(5) AND ADDRESS(LY) 0. PLREORMING ORGANIZATION
HEBORT NUMBER
- Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/GE/ENG/90D-41
LGRS TRAOM TG G At Y HANIELS) ANMD ADDRESHES) T SPONSORING 7 MONITORING
AGENCY REPORT NUMBER
ASD/YF

WPAFB OH 45433-6583

T e I MEHTARY 1O

-

S S TG O T AVAN ol S TATIUIAEMNT

¢ Approved for public release; distribution unlimited

;

o e M ATt £

3 Dec 90.

170 IASTRIBUTION CODE

Ve ANGTRACT (RTaxnmnn S0 wosds)

X

This research presents a merger of the specification and design capabilities of the Very High

Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL) with a known verifica-
tion method (UC Berkeley’s verif software) in order to solve the design and verification problem of
scquential circuits. The fruits of this research are a behavioral VHDL model for sequential circuit
specification, a structural VDL model for sequential circuit design, and a method for comparing
two circuits described using these VHDL models in order to demonstrate circuit equivalence. The
behavioral and structural VHDL models were developed and tested within the Intermetric's VHDL
software support environment. Modifications were made to the existing UC Berkeley verif software
so that it could accept sequential circuits described using the structural VHDL model. Addition.
ally, a behavioral to structural VHDL translator (b2s) was developed such that sequential circuits
expressed in the behavioral VHDL model could be shown equivalent to structural VHDL designs

via the UC Berkeley verification software, 77

T4 UG CT TERMS

Sequential Circuits, VDL, Verification, Circuit Equivalence

Specification, Modeling

15. NUMBER Of PAGES

310

16. PRICE COOE

V1R CURITY CLASSHICATION

OF REPORT

Unclassified

18

SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSITICATION
OF ABSTRACT

Unclassified

20. LUIMITATION OF ABSTRACLY

UL

featl A0 1.280.5%00

Standard torm 298 (Pev 0 849
Provccidwmd bty ANY YtE 219 8
798102

-

ENERAL INSTRUCTI

The Report Documentation Page (RDP)
that this information be consistent with the rest
Instructions for filling in each block of the form foll
optical scanning requirements.

NS FOR
is used in announcing and cataloging reports. It is important

ow,

MPLETING SF 2

of the report, particularly the cover and title page.
It is important to stay within the lines to meet

~ Block 1. Agency Use Only (Leave Blank)

Block 2. Full publication date
including dﬂ" month, and year, if available (e.g.
1 Jan 88). Must cite at least the year.

Block 3. T fR n ver
State whether report is interim, final, etc. If
applicable, enter inclusive report dates (e.g. 10
Jun 87 - 30 Jun 88).

Block 4. Title_and Subtitle, A title is taken from

the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than one volume,
repeat the primary title, add volume number,
and include subtitle for the specific volume. On
classified documents enter the title
classification in parentheses.

Block 5. Eyndin m To include contract
and grant numbers; may include program
element number(s), project number(s), task

number(s?, and work unit number(s). Use the

following labels:

C - Contract PR - Project

G - Grant TA - Task

PE - Program WU - Work Unit
Element Accession No.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing
the research, or credited with the content of the
report. If editor or compiler, this should follow

the name(s).

Block 7. i izati
Address(es). Self-explanatory.

Block 8. i izati

Number. Enter the unique alphanumeric report
number(s) assigned by the organization
performing the report.

Block 9. SQQDS.QLLMQNIQ.&Q.?AQ.&DH
Names(s) and Address(es), Self-explanatory.

Block 10. s.ggnmmmmgtmm&mm
Report Number. (If known)
Block 11, Enter

information not included elsewhere such as:
Prepared in cooperation with...; Trans. of ..., To
be published in When a report is revised,
include a statement whether the new report
supersedes or supplements the older report.

Block 12a. Distributi ilabli men
Denote public availability or limitation. Cite
any availability to the public. Enter additional
limitations or special markings in all capitals
(e.g. NOFORN, REL, ITAR)

DOD - See DoDD 5230.24, "Distribution
Statements on Technical
Documents.”

DOE - See authorities

NASA - See Handbook NHB 2200.2.

NTIS - Leave blank.

Block 12b. Distribution Code.

DOD - DOD - Leave blank

DOE - DOE - Enter DOE distribution categories
from the Standard Distribution for
Unclassified Scientific and Technical
Reports

NASA - NASA - Leave blank

NTIS - NTIS - Leave blank.

Block 13. Abstract, Include a brief (Maximum
200 words) factual summary of the most
significant information contair_\ed in the report.

Block 14. Subject Terms, Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total

number of pages.

Block 16. Price Code, Enter appropriate price
code (NTIS only).

Blocks 17.-19. i ificati
Self-explanatory. Enter U.S. Security
Classification in accordance with U.S. Security
Regulations (i.e., UNCLASSIFIED). If form
contains classified information, stamp
classification on the top and bottom of the page.

Block 20. Limitation of Abstract, This block

must be completed to assign a limitation to the
abstract. Enter either UL (unlimited) or SAR
(same as report). An entry in this block is
necessary if the abstract is to be limited. If
blank, the abstract is assumed to be unlimited.

Standard Form 298 Back (Rev. 2-89)

